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In  order to apply vector-set methods to the solution of Patterson syntheses, it is first pointed out 
that  the Patterson synthesis is the vector set of the electron density provided that  the Patterson 
function is defined as an integral and not as an average of the electron-density product. With this 
proviso, vector-set methods can be applied to solve the Patterson synthesis for the electron density. 
The most appropriate vector-set method is the synthesis of the vector-set points into n identical 
n-gons. To do this with Patterson syntheses, one sets up a function of the Patterson values at the 
vertices of an image polygon, called an image-seeking function. Such a function has the property of 
attaining a high value when the polygon is in image position, but zero when it is not. Two such 
functions have been proposed, a product function and a minimum function. The properties of these 
functions are discussed. These functions bear an inequality relation to the electron density, and the 
inequality is strengthened by combining functions to produce others of greater rank. Application of 
this theory leads to a map of the function which is essentially an approximate map of the electron 
density. The theory is illustrated by application to the solution of the structure of berthierite, 
FeSb~S 4, from its Patterson projection. By combining maps of the minimum function for this 
crystal, one of rank 8 is readily attained which is sufficiently close to the electron density so that  
seven atoms in the asymmetrical unit are clearly distinguished. These have peaks of relative ranks 
4 : 2 : 1, which is approximately the relative electron counts of Sb, Fe and S, respectively. 

The relation between these methods and those of Clastre & Gay, Garrido, Robertson, and 
McLachlan, is briefly discussed. The methods of these authors are the equivalents of image methods 
as applied to sets of discrete points, although a different language is used to describe them. They 
have not advanced beyond methods for decomposing vector sets of discrete points, and cannot be 
expected to solve typical Patterson syntheses. 

Introduction 

For m a n y  years the opinion was hold tha t  the direct 
solution of crystal  structures by  X-ray  means  was, in 
general, impossible because, a l though the ampli tudes 
of the diffracted waves could be exper imenta l ly  deter- 
mined, their  phases could not. While carrying out some 
crystal-structure studies during the early par t  of the 
recent war, the writer realized tha t  the impossibi l i ty of 
determining phases exper imenta l ly  did not necessarily 
imply  the impossibi l i ty  of determining crystal  struc- 
tures. At the Lake George meeting of the American 
Society for X-ray  and  Electron Diffraction in June  
1946, it was shown tha t  there was a very  simple relation 
between the electron-density map  and the Harker  
synthesis (Buerger, 1946). After a brief excursion into 
the prediction of phases through the implication re- 
lation and aided by  the ' squared  crysta l '  concept 
(Buerger, 1948 a, b), the  writer 's interest was turned to 
the corresponding problem in crystal space rather  than  
in Fourier space. In  this s tudy it immedia te ly  became 
obvious tha t  the Pat terson synthesis could be solved. 

An early a t t empt  to relate the Pat terson map to the 
electron-density map  had been made by Wrinch (1939). 
She simplified the problem by considering a set of dis- 
crete points and its Pat terson representation, which 
m a y  be called the vector set. A major  contribution was 
the introduction of the notion of an image. Wrinch 

showed tha t  one can find in the vector set the  several 
images of a point, a line, or even a triangle, these com- 
prising sets of one, two or three points which occur in 
the original sot of points. She also discussed the 
analysis  of a vector set for the original sot of points, 
bu t  did not present a technique for performing an 
analysis in a general case. 

Building on Wrinch 's  fundamenta l  work, the writer 
developed several general methods for completely 
analyzing a vector set of points. Those methods were 
first presented in a series of lectures on vector methods 
(Facul ty  of Philosophy, Univers i ty  of Rio de Janeiro,  
December 1948), and as a contribution enti t led 'The  
status of crystal-structure analys is '  which formed part  
of a symposium on the Results  of Crystal  Structure 
Studies (Pit tsburgh Meeting of the American Crystallo- 
graphic Society, June  1949); they  appeared in pr int  
in March 1950 (Buerger, 1950a).* The general method 
was immedia te ly  extended so tha t  it could be applied 
to the t ransformat ion of true Pat terson syntheses to 
electron-density maps  (Buerger, 1950 b, d). 

In  order to apply  vector-set methods to situations 
arising in actual  crystal-structure analysis,  two de- 
velopments  were needed. I t  does not necessarily follow 

* The nota t ion  and theory of this 'Vector  Set pape r '  are 
frequently referred to in the  following discussion. For  brevi ty  
it is designated by the  symbol VS. 
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that  because a vector set of discrete points can be 
solved, the Patterson synthesis of a crystal can be 
handled by the same methods. I t  is necessary to 
demonstrate the connection between a set of discrete 
points with its vector set, on the one hand, and the 
continuously variable electron density of a crystal, 
with its continuously variable Patterson representa- 
tion, on the other. In the second place it is necessary 
to find a mechanism for finding images in the Patterson 
synthesis. 

Extension of  vector-set theory to continuously 
variable electron densities 

I t  has been shown (Buerger, 1950 b, d) tha t  the vector 
set of a continuously variable electron density is indeed 
the Patterson synthesis, provided that  the Patterson 
synthesis is defined in a particular way. In  the original 
derivation of his function (Patterson, 1934, 1935), 
Patterson chose the average value of the electron- 
density product separated by a vector having com- 
ponents xyz, as the vector ranged over the cell. To 
emphasize this averaging characteristic, Patterson 
designated his function A(xyz) .  I f  one starts with an 
electron density represented by the :Fourier series 

1 
p(xyz) = f f  ~ ~ ~ Fe -2"i(hx+~+~z), (1) 

h k l  

then Patterson's averaging function comes out to have 
a :Fourier representation 

A(xyz) = 1 Z Z Z F2 e-2ni(hx+~+tz)" (2) 
F -  

h k l  

On the other hand, the vector sot of (1) turns out to be 
simply the integral of the electron-density product 
over the cell volume. The :Fourier representation of 
this, which will be designated P(xyz) to distinguish it 
from Patterson's original average, is 

1 
P(xyz) = -~ Z Z Z F2 e-9"'i(hz+~+Zz)" (3) 

h k l 

Note tha t  this synthesis is exactly the same as the 
:Fourier representation of the electron density except 
that  F2's are substituted for F's.  I t  is therefore identical 
with the writer's 'squared crystal '  (Buerger, 1948b). 
The relation between the vector set of the electron 
density and the original Patterson averaging function 
is simply 1 

P(xyz )=~A(xyz ) .  (4) 

Scheme for analyzing Patterson syntheses 
suitable to automatic application 

Having shown that  the Patterson synthesis is essentially 
the vector set of the electron density, it becomes 
possible to analyze Patterson syntheses by vector-set 
methods. This implies that  one hopes to find suitable 
functions which will automatically find images in a 
Patterson synthesis. The details of setting up such 
functions are reserved for a subsequent section. 

The two general methods of solving a vector set are 
to synthesize its points into either a 'spectrum of 
polygons' (VS, p. 90) or into a set of n identical n-gons 
(VS, p. 92). The latter method is easily adapted to the 
solution of Patterson syntheses, and is particu]arly 
suited to the derivation of a quantitative relation 
between electron density and Patterson synthesis in 
the form of an inequality which increases in power as 
the n-gon is synthesized in successive stages from a 
' 2-gon' (a line) to an n-gon. 

In VS (p. 89) it was pointed out tha t  a 'vector set 
can be synthesized into images of the primitive set in 
each of its points ' .  This is illustrated analytically by 
expressing the vector-set matrix as images of the n-gon: 

a a  ab ac ad ae a(a-t-bTc+d+e)'[ 
ba bb bc bd be b (a+b+c+d+e) |  
ca cb cc cd ce= c(a+b+c+d+e)~,  (5) 
da db dc did de d (a+b+c+d+e) |  
ea eb ec ed ee e (a+bTc+d+e)J  

- ( a + b + c + d + e ) ~  
= - ( a + b + c + d + e ) c  . (6) 

- ( a + b + c + d + e )  
- ( a + b + c + d + e )  

The right side of (5) can be described as the image of 
the n-gon (a + b + c + d + e) as seen from its separate 
points a, b, c, d and e. The rearrangement given in (6) 
follows by virtue of relation (4) of VS. The right side 
of (6) can be described as the image of the separate 
points a, b, c, d and e, as seen from the inverse polygon, 
the inverse character being required by the negative 
sign. These relations can be given very simple 
geometrical illustrations, shown in Figs. 1 and 2. In 
Fig. 1 is shown the points of a vector set assembled 
(' synthesized') into a set of nn-gons (n being 5 in the 
illustration). In order to put  the discussion in some- 
what more usuM language than that  used in VS, let 
each of the terms in the vector set on the left of (5) 
represent a vector. Then the right side of (5) can be 
interpreted to mean that  these vectors can be gathered 
into sheafs of vectors. If  some arbitrary point in the 
polygon is taken as representing the position of the 
polygon, then each sheaf of vectors can be repre- 
sented by a single vector to this arbitrary point. Thus, 
instead of all the vectors from the origin to each point 
of the vector set, one can bulk together sets of points 
to form polygons, and substitute for each sheaf of 
vectors to the vertices of a polygon, a single vector 
from the origin to the representative point. This set of 
vectors is represented in Fig. 1. Fig. 2 illustrates that  
this same set of vectors determines a set of points 
which is the inverse polygon. This corresponds to the 
right of (6). 

To see how this relation permits the solution of a 
vector set, assume, first, that  the solution of the vector 
set is known. This means that  in Fig. 1 the arrangement 
of points constituting one polygon is known. I f  this 
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n-gon is permitted to rove over the vector set, it en- 
counters n positions where its points register with the 
points of the vector set. These positions are indicated 
by the crosses of Figs. 1 and 2. The set of such positions 
constitutes the inverse solution, and, furthermore, the 
vector matrix (6) shows that  if the weighting of the 
images of the vector set is taken into account (Buerger, 
1950b, d), the weighting of the points determined by 
the process, Fig. 2, also gives a correctly weighted 
solution of the vector set. 

In this discussion it appears merely tha t  if one knows 
the solution of the vector set and uses it in the above 
process, the solution is fed back in the form of the 
inverse solution. Actually the full solution has been 
assumed in the above discussion only for the purpose of 
illustrating the nature of the process. The process is 
much more powerful than this; for, if any minimum 
fragment of the solution is known, the entire solution 
can be found by the same means. That  this is so can be 
demonstrated analytically by writing down, in matr ix  
form, the process of solving a vector set by the pro- 
cedure of synthesizing its points into a set of 2-gons, 
3-gons, 4-gons and eventually n-gons. This stepwise 
synthesis is as follows: 

aa ab ac ad ae aa ab ac a(d+e) 
ba bb bc bd be ba bb bc b(d+e) 
ca cb cc cd ce = ca cb cc c(d+e) 
da db dc dd de da db dc d(d+e) 
ea eb ec ed ee ea eb ec e ( d + e ) 

aa a ( b + c + d + e )  
ba b ( b + d + c + e )  
bc c ( b + d + c + e )  
bd d ( b + c + d + e )  
be e(b+c+d-t-e) 

a ( a + b + c + d + e )  
b ( a + b + c + d + e )  
c ( a + b + c + d + e )  
d ( a + b + c + d + e )  
e(a-i-b-i-c + d-i-e) (7) 

Fig. 1. 

This is merely a compact review of (9), (14), (15) and 
(16) of VS. I t  is the analytical representation of the 
process of collecting points of the vector set first into 
a set of line images, then adding a point to each line 
image to change them into triangle images, then 
adding a point to each triangle image to change them 
into quadrilateral images, then adding a point to each 
quadrilateral image to change them into pentagon 
images. For a fundamental set with n = 5  points, this 
exhausts the points of the vector set, i.e. every point 
of the vector set is a member of one of the five pentagon 
images, each of which constitutes a solution. But for 

each stage in the process, a relation similar to (5), and 
therefore (6), is true. In other words, if any kind of 
image with n~> 2 can be found in the vector set, the 
complete set of such images can be found. If  the loca- 
tion in each such image of the set is spotted by means 
of a point associated with the image and having the 
weighting of tha t  image, then the set of such points is 
the correctly weighted inverse solution. A graphical 
illustration of this is given in Figs. 3 and 4. 

aa ab a (c+d+e)  
ba bb b(c+d+e)  
ca cb c (c+d+e)  
da db d (c+d+e)  
ea eb e(c-t-d-t-e) 

Fig. 2. 

Q o 

o 

o 
o 

Fig. 3. Fig. 4. 

I t  should be observed that ,  if a line image is esta- 
blished and the line moved over the vector set parallel 
to itself, it might encounter two points fortu.itously 
related so tha t  they determine an equal and parallel 
line segment. If  this accidental situation should arise, 
then the above procedure would lay down a false 
location of a line image owing to a purely fortuitous 
relation between a pair of points in the vector set. Such 
a registry of an image with a few accidentally related 
points of the vector set becomes the less probable the 
larger the number of points in the image with which 
registry must be simultaneously achieved. Thus, the 
success of the process described becomes the more 
certain as the value of p of the p-gon image becomes 
greater, attaining a maximum at p = n. This permits 
one to increase the certainty of a correct solution by 
exploring for the solution in stages. Thus, one would 
first select any point, connect it with the origin and 
thus establish a line. The images of this line can be 
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found, and their weighted locations establish a tenta- 
tive solution. If, for the reason mentioned above, or 
for reasons still to be discussed, there result too many 
points in the solution to conform to the n points of the 
fundamental set, the number of points in the tentative 
solution can be reduced by selecting one and then 
testing it by adding it to the original line in the solution. 
This constitutes a triangle, whose n images must occur 
in the vector set if the triangle is truly a part of the 
solution. If  so, the new polygon (improved from a line 
with p = 2 to a triangle with p- -  3) can be used to rove 
over the vector set. This three-point polygon is less 
likely to encounter locations of fortuitous registry with 
the points of the vector set than the line. But if there 
are still too many positions of registry, i.e. if the 
solution contains more than the n points of the funda- 
mental set, then a point of the solution can be selected 
to add to the triangle to transform it into a quadri- 
lateral, which can be used to explore the vector set for 

• ¢ \ \  / 

M ~  

Fig. 5. 

registry. Proceeding in this stepwise manner, a tenta- 
tive solution established by line images can be pyra- 
mided to a solution certified by (a) exhausting the n 9 
points of the vector set, and (b) by finding n locations 
of an n-gon which (c) themselves have the arrangement 
of the correctly weighted inverse n-gon. 

At this point it is desirable again to call attention 
(VS, p. 92) to the fact that  it is impossible to distin- 
guish between right-handed and left-handed line 
images. If, therefore, the fundamental set is non- 
oentrosymmetrical, the first exploration for a solution 
with line images yields both a right-handed and a left- 
handed solution which are intermixed (Fig. 5) (Buerger, 
1950b). These are joined by the line whose images in 
the vector set have been used for the solution. To rid 
the tentative solution of one of the unwanted enantio- 
morpheus solutions, one need merely add any point 
of the tentative solution to the original line images, 
thus transforming them into triangle images (Fig. 4). 
In this general case, such triangle images are either 
left-handed triangles or right-handed triangles, de- 
pending on the choice of the added point. As this 
triangle roves the vector set, only one solution is found 
to be in registry. In this way an unwanted enantio- 

morpheus solution can be eliminated (Buerger, 
1950 c, d). 

The whole matter of enantiomorphous solutions can 
be avoided ff the fundamental set is centrosymmetrical, 
provided one chooses as the original line for image- 
seeking a line from the origin to a vector point repre- 
senting an 'interaction' between centrosymmetrically 
situated points in the fundamental set. Actually, this is 
a special aspect of the multiple-image situation, which 
is about to be discussed. 

Multiplicity of Patterson peaks 
To make a successful choice of line for an initial image 
requires a knowledge of the relative weights of the 
Patterson peaks. Patterson peaks may have multiple 
weight fortuitously, owing to the chance coincidence 
of two or more peaks, or this superposition may occur 
with exactness due to symmetry. The multiplicity due 
to symmetry is discussed in implication theory 
(Buerger, 1946). As a brief comment it may be noted 
that  all inversion peaks (those due to the ' interaction' 
of two atoms which are equivalent by inversion) are 
single peaks, that  reflection peaks (those due to the 
' interaction' of two atoms which are equivalent by any 
reflection symmetry) are single when the plane is 
parallel to an odd-fold axis but double when parallel to 
an even-fold axis, whereas rotation peaks (those due 
to the 'interaction' of two atoms which are equivalent 
by rotation symmetry) are single for certain rotation 
operations, multiple for others. 

The multiplicity of a Patterson peak can thus be 
judged by symmetry. I t  can also be judged by com- 
parison with the origin peak. This origin peak has a 
volume ~] Z~, where Z~ is the number of electrons in the 

i 
j th  atom and the summation is taken over the crystal 
cell. Since this volume is kno~n, the volume of any 
peak on the Patterson synthesis can be calibrated in 
terms of it. Obviously, ifa particular peak has a volume 
Z~, it is a single symmetrical interaction, whereas if it 
has a volume of 2Z~, it is a double symmetrical inter- 
action, etc. 

Solutions resulting from multiple images 
The penalty for choosing a multiple peak for forming a 
line to be used as a first image is to incur a multiple 
solution (Buerger, 1950 b). That this is so is evident by 
making two points of the vector-set matrix the same 
point. Suppose that in the fundamental set there are 
two pairs of points so arranged that  the vector relating 
the points of one pair is the same as the vector relating 
the points of the other. The two vectors coincide in 
vector space, and the point at the end of the vectors is 
a multiple point. The line connecting this point with 
the origin has two sets of images. One is the sot of 
images of one of the parallel lines in the fundamental 
set, the other is the set of images of the other line in the 
fundamental set. 
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The ibrmal  t r ea tmen t  of this is as follows. Let  the 
points of the  crystal  set be a + b + c + d + e, and suppose 

t ha t  the  vector bc=de. Then the points bc and de 
coincide in the  vector set so 

bc=de. (8) 

I f  the origin point  is added to both sides of this equali ty,  
there results bb + bc = dd + de. (9) 

Expressed in the  form of line images, this is equivalent  
to b(b+c)=d(d-t-e). (10) 

This means t h a t  the image of the  line (b+c) is the 
same if seen from b as the image of the  line (d + e) if 
seen from d. In  other  words, these line images coincide. 
But ,  according to the image in terpreta t ion of the 
vector-set  matr ix ,  each such line also has its column 
of images, i.e. all the lines blocked out in the following 
ma t r ix  are parallel but  distinct, except the two which 
are identical according to (10). These are tied together:  

aa lab ac I lad ae I 

ba I bb b c h  bd be] 

> .  (11) 

J 

This decomposition shows t h a t  if one should select the 
line bb+bc, i.e. b(b+c), as the initial line image, more 
t h a n  one column of images would be found to be the 
apparen t  set of images. But  this does not  exhaust  the 
tota l  number  of lines found, for the  lower left-hand pair  
of points, da + ea, is centrosymmetr ical  with the upper  
r ight-hand pair, ad+ae, and consequently represents 
a parallel line. The total  number  of lines found is bet ter  
demonst ra ted  by  synthesizing the points of the mat r ix  
into a certain set of line images and their centrosym- 
metrical  equivalents.  I f  there are no coincident vectors, 
the  number  of parallel, equal lines for a fundamenta l  
set of n - - 5  is four, plus four more centrosymmetrical ly 
related lines" 

. ( 1 2 )  

But  if  degeneracy (8) with its concomitant  (9) and (10) 
occur, then  the following ten lines are equal, parallel 

and apparen t  images: 

aa l a b  ac] lad ae 1 

These relations for vector sets based upon fundamenta l  
sets without  and with parallel vectors are illustrated 
in Fig. 6. 

o * 

(a) (c) 

:" 2 /  ,; j~  ./l :2 

(b) (d) 
Fig. 6. The consequences of decomposing a vector set by 

using a multiple line-image. (a) A fundamental 5-point set 
without parallel vectors. (b) The vector set of Fig. 6 (a). 
The full lines are the eight true images of a line. (c) The 
fundamental set of Fig. 6 (a) altered by shifting one of the 
five points so that the set contains equal, parallel vectors. 
(d) The vector set of Fig. 6 (c). The full lines correspond to 
the line images shown in full lines in Fig. 6 (b). The broken 
lines, which were distinct in Fig. 6 (b), now form part of a set 
of eight parallel and equal lines, the additional lines arising 
from the multiple nature of the vector point used to form 
the initial line image. The double weighting of points arises 
from the migration of points of Fig. 6 (b) in the directions 
of the arrows. 

In  solving a vector set or Pa t te r son  synthesis,  one is 
faced with the selection of the  appropr ia te  peak for 
beginning the decomposition. A common example of 
the  situation is i l lustrated in Fig. 7, which represents 
a simple centrosymmetr ical  fundamenta l  set. Note 
t h a t  the points related by the inversion determine a 
vector, shown as a full line, which is, in general, parallel 
to no other vector. In  the  vector set (Fig. 7 (b)) this 
' in te rac t ion '  is single. I f  this single point is connected 
with the origin, and the images of the resulting line are 
used to decompose the  vector set, a single solution 
(Fig. 7 (c)) results. On the other  hand, ' in terac t ions '  
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between points not related by the inversion in Fig. 7 (a) 
(hi other words, unsymmetrical ~interactions') deter- 
mine a double point in the vector set (Fig. 7 (b)). I f  
such a point is connected with the origin and the images 
of the resulting line are used to decompose the vector 
set, a pair of intermixed solutions results. These 
necessarily have the original line in common. These two 
solutions are translated equivalents. Since a trans- 
lation combined with an inversion is another inversion 
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located at  half the translation from the first inversion, 
it follows tha t  such a double solution contains the true 
inversion center of the solution plus a false center 
which relates the two solutions. A similar symmetrical 
duplication of solutions occurs with other symmetry 
elements. 

Image-seeking functions 
One can apply the theory just discussed in one of two 
ways. The rather obvious way is to a t tempt  to locate 
peaks in the Patterson synthesis and then find images 
defined by them by some graphical method. Such a 
scheme is difficult of application because many 
Patterson peaks are ordinarily swamped by back- 
ground and hence not distinguishable. Furthermore, 
regions of high value of the Patterson function are 

frequently collections of unresolved peaks. The practi- 
cability of using such methods is increased by trans- 
forming the original Patterson synthesis into a 
'sharpened Pat terson '  synthesis (Patterson, 1935; 
Buerger, 1950 b), or a 'focused' synthesis (Buerger, 
1950 c). The effect of this transformation is to provide 
greater resolution of the n 2 peaks in the Patterson cell. 

An alternative and preferred method is to set up a 
function which will automatically perform the job of 
finding the locations of images in the Patterson 
synthesis. Such a function is appropriately called an 
image-seeking function. To appreciate the desired 
characteristics of such a function, return to Fig. 1, and 
suppose tha t  the solution is known, i.e. tha t  one knows 
the relative positions of the vertices of one solution 
polygon. These relative positions can be defined by  the 
origin plus ( n - l )  other points, specifically 000, 
UiVxWl, u2vgw2, uavawa, u4v4w 4 in this case. Let this 
polygon be moved to another location of the cell by 
a translation whose components are xyz.  In  the new 
location the co-ordinates of the vertices are 

0 0 0 + x y z ]  
Uz Vi Wi + x y z |  
u~v~w~+xyz~ (14) 
uavawa+xYz| 
uavaw a + xyzJ  

First suppose, for clearness, tha t  the Patterson 
synthesis has the simple form of a vector set of discrete 
weighted points which do not coincide with one another. 
A desirable image-seeking function would be some 
function of the Patterson synthesis at the co-ordinates 
given in (14) such tha t  the function would have a value 
of zero when the translation xyz  does not cause the 
original polygon to coincide with one of its images, 
but which would h a v e n  high value when the trans- 
lation xyz  does cause coincidence to occur. 

The product function 

Two rather obvious functions of this nature have 
been suggested and tried. One kind may be termed 
a product function (Buerger, 1950 b, d). This is simply 
the product of the values of the Patterson function at  
the p vertices of the image-seeking polygon. As the 
polygon (pentagon in Fig. 1) is allowed to rove over the 
volume of the Patterson cell, x, y and z of (14) assume 
all values. The product 

Hs(xyz ) = P(OOO+xyz) 
× P(UiVlW 1 +xyz)  
× P(u~ v~ w~ + x y z) 
× P(uavawz+xyz) 
× P(u4v~w 4 + xyz) (15) 

has zero value for any xyz  unless all five points coincide 
with a pentagon image of Fig. 1. When coincidence 
does occur (with appropriate values of xyz) then the 
product has a high value, and this is specifically related 
to the electron density p(xyz) through the weighting 
of the image (Buerger, 1950d). 
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One does not ordinarily know the full solution when 
starting to interpret a Patterson synthesis. Usually one 
can only recognize a point, say at u lv lw  1, as having 
single weight, and one wishes to construct a function 
which seeks an image of the line formed by connecting 
this point and the origin (Fig. 8 (a)). The partial product 
composed of the first two terms of (15), namely, 

II~(xyz) = P(OOO+xyz) 
x P(u lv lw  1 +xyz ) ,  (16) 

seeks and finds the images of this line, since it has zero 
value'whenever the translation x y z does not superpose 
the original line on one of its images. Except for the 
original line from 000 to u lv lw  1, all such non-zero 
products are related to the electron density at  the 
corresponding point in the fundamental set by the 
simple relation (Buerger, 1950 d) 

1 
p ( x y z ) = P ( u l v l w l  ) ~/IIs(xyz ). (17) 

In case overlap of Patterson peaks does occur, as it 
usually does in the Patterson synthesis of a real crystal, 
the value of one or more terms in II is fortuitously 
increased; consequently the right of (17) is increased. 
But  the inequality 

1 
p(xyz)  <~ p(u l  vl wl ) ~/IIg.(xyz) (18) 

still is valid. 
This relation is readily generalized. I f  an image- 

seeking product-function is constructed of p terms for 
the purpose of seeking images of p-gons (Fig. 9), the 
relation between the electron density and the product 
function is 

1 
p(xyz)  <~ 

P(Ul Vl Wl) x P(u2vgw2) x ... x P(u~v~w~) 

x p ~/II~(xyz). (19) 

When any image found by (19) includes the origin as 
one of its vertices, the inequality is somewhat less 
powerful, since one of the terms in II~(xyz) is the 
weight of the origin peak. :But these very images 
merely feed back information which has been put  into 
the original image-seeking function, so that  no real loss 
of information occurs owing to this circumstance. 

The writer,* and subsequently Pat terson, t  have 
made actual use of the YIg. function in solving two- 
dimensional Patterson maps of crystals whose struc- 
tures had .previously been unknown. The results of 
applying the II function appear to be good in instances 
where the structure of the crystal is somewhat open, 
and also when used with crystals having a few heavy 
atoms embedded in a structure of lighter ones. The 
product function has certain disadvantageous features, 

* Demonstrated as part  of a lecture on the interpretation 
of the Patterson synthesis given to the North American 
Philips Diffraction School, 6 October 1950. 

]~ Informally presented as part  of a discussion of a paper 
given at  the Washington meeting of the American Crystallo- 
graphic Association, 15 February 1951. 

and also it is more difficult to derive than the minimum 
function, a discussion of which follows in the next 
section. 

When a tentative solution is achieved by (18), the 
strength of the inequality can be improved by adding 
to the 2-gon image used in forming function (16), one 
or more new points suggested by the solution. Having 
started the solution with function (16), one is then able 
to use function (15). This provides the more powerful 
inequality (19). In  other words, the electron density 
of the crystal can be approached by successive approxi- 
mations. This general process is further discussed in the 
next section. 
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The minimum function .~ 

An unfortunate feature of the product function is 
caused by the continuous background of the Patterson 
synthesis. As the polygon roves this synthesis, the 
product function has a background value when all 
vertices of the polygon are on background. But  when 
one or more of its vertices make chance registry with 
Patterson peaks, the function has a higher-than-back- 
ground value. Such chance coincidences, therefore, 
produce small false peaks in the map of the product 
function which do not correspond to any feature on the 
electron-density maps. 

A more desirable kind of function would be one 
which had a continuously low value so long as even one 
vertex of the polygon was on background, since such 
a circumstance corresponds with not finding an image 
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of the polygon. The writer has devised the m i n i m u m  
funct ion  (Buerger, 1950e) for this purpose. The 
minimum function is defined as the minimum value of 
the several Patterson values (weighted, ff necessary) 
which occur ~ the vortices of the polygon used to 
search for images of itself. Lot the original polygon 
have :p vertices at 000, uzvzwz ,  u2v,  w , , . . .  , u~v~w~.  
When the polygon is translated by x y z ,  its vertices 
have p sets of co-ordinates similar to those listed in (14). 
The minimum value, designated by the symbol M, 
may  then be represented by 

M ~ ( x y z )  - M{P(0 0 0 + xyz ) ;  

K z P ( u  i v  z w z + x y z); 

K , P ( u , v , w , .  + x y z )  ; 

K~_z P(u~_z v~_z w~_l + xyz)} ,  (20) 

where the K's are constants which normalize the 
relative values of the Patterson function at  the several 
vertices of the polygon to the same value. The reason 
for this normalization is as follows: The exact registry 
of a polygon with an image location depends equally on 
the registry of each vertex, regardless of the value of 
the Patterson function at  tha t  vertex. To assure equal 
representation of each point in the operation of the 
minimum function, the Patterson values at  the several 
points are scaled to normalize them to the same value. 
For example, ff the polygon is a + b + c + d + e, the 
Patterson values at the vertices are proportional to 
a, b, c, d and e, respectively. They can all be normalized 
to a (for example) by multiplying the Patterson 
'weight '  at b by a/b = K1,  at c by a/c = K,. ,  etc. The 
polygon has now been transformed into one in which 
all vertices have the same weight. 

A simple and convenient application of the minimum 
function is to images composed of centrosymmetrical 
' interactions' ,  i.e. ' interactions '  between atoms which 
are centrosymmetrically situated in the crystal 
structure. The relation between the electron density 
and M S is very simply demonstrated by reference to 
Fig. 10. Fig. 10 (a) shows a simple centrosymmotrical 
fundamental set, while Fig. 10 (b) shows its Patterson 
function. Note that  all centrosymmetrical 'inter- 
actions',  namely, aa, bb and cc, have single weight, 
whereas all others are multiple. I f  a line from the 
origin to aa is established as a line whose images are to 
be found, one notes tha t  the minimum values at the 
ends of the line when in imago position have the very 
simple form 

aM~(xyz)  = 2pap(xyz) .  (21) 

The only exception to this occurs for the imagos con- 
raining the origin, for which the coefficient 2 in (21) 
does not appear owing to the unit nature of point aa. 
Since such images merely feed back information put  
into the formation of the minimum function, no real 
loss of information is incurred by this exception. 

Alternatively, the imago bb could be connected with 
the origin to form a line, and the images of this line 
could be sought. Fig. 10 (c) shows tha t  the minimum 

values at  the ends of the line are related to the electron 
density by bM~(xyz) = 2pbp(xyz  ). (22) 

If  the vector set is the Patterson synthesis of a real 
crystal, then, in general, overlaps of 'squared a toms '  
(Buergor, 1948 b) occur in the Patterson synthesis. In  
such instances (21) and (22) have enhanced values on 
their left-hand sides, so that  they become inequalities 
of the same general form. The information from two 
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such inequalities can be combined to give a more 
powerful inequality, thus: 

1 
--aM2(xyz )>~p(xyz), (23) 2p. 

1 
- -  bM2(xyz  )>~p(xyz),  (24) 
2p~ 
1 

The reason why (25) is more powerful than  either (23) 
or (24) is that  the loft-hand member of (23) may  have 
a lower value at xzylzl and the left-hand member of 
(24) may have a lower value at xgy~z2. Since (25) 
combines the minimums of both relations, its lo~-hand 
member has the lower value at both xzyz z  z and x , y ~ z , .  

The graphical representation of (23) is given in 
Fig. 10 (b), that  of (24) in Fig. 10 (c). The combination 
of (23) and (24), namely, (25), is represented in 
Fig. 10 (d). This shows that  the combination of two 
minimum functions which each seek line images is 
equivalent to a minimum function which seeks quadri- 
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lateralimages. As a generalization of this combinatorial 
relation, it can be stated that  the minimum of two 
appropriately weighted minimum functions is a new 
valid minimum function of higher rank and greater 
power. Thus, (23), (24) and (25) illustrate the com- 
binatorial relation 

1 bM~(xyz)}=abM4(xyz) ' (26) M(2~aaM~(xYz);-~p b 

and (25) shows that  

a~'M4(xyz ) >~ p(xyz). (27) 

A more general statement of the combinatorial pro- 
perties of minimum functions can be expressed as 
follows: 

M{C~M~(xyz); CqMq(xyz)}=M~+q(xyz), (28) 
where the C's are constants concerned with the weight- 
ing of the images used in forming the original minimum 
functions. Relation (28) corresponds with adding a 
p-gon image to a q-gon image to form a (p +q)-gon 
image, as discussed in an earlier section of this paper. 

Relation (26) is of great practical utility. I t  implies 
that  the decomposition of a Patterson map by one 
line image can be combined with the decomposition by 
a second line image to form a close approximation to 
the electron density (27). If  the two Patterson peaks, 
aa and ab, used to establish the line images are the 
centrosymmetrical ' interactions '  of the same species 
of atom, then Pa-=Pb, and the relation degenerates to 
the simple form 

M{aM~(xyz); bM~(xyz)}=2abM~(xyz). (29) 
This specialized relation is very useful in combining 
minimum functions resulting from the decomposition 
of the Patterson synthesis by symmetrically equivalent 
atoms, and can always be used where symmetry other 
than an inversion exists in the crystal being analyzed. 
The relation is extensively used in the discussion which 
follows. 

The practical application of the 
minimum f u n c t i o n  

In  practice, it is most convenient to start  transforming 
the Patterson synthesis to the approximate electron- 
density map by first establishing a line image and then 
using the minimum function to find the images of this 
line. In the general case, the line image decomposes 
the Patterson synthesis into two displaced, enantio- 
morphous solutions. If  the crystal (or its projection) is 
centrosymmetrical, these solutions are, of course, 
identical. They coincide provided that  the line image 
is established by an ' interaction'  between two centro- 
symmetrically situated atoms. The proper selection of 
a centrosymmetrical ' interaction'  can be guided by 
(a) the relation of rotation peaks to reflection satellites 
in a Patterson projection, (b) by the relation between 
the peaks on the Patterson projection to those on a 
parallel Harker projection, or (c) by calibration of peaks 
in terms of the origin peak, as discussed in an earlier 
section. 

Suppose tha t  a two-dimensional Patterson synthesis 
is to be decomposed by means of the minimum 
function. Let the centrosymmetrical image point 
chosen have co-ordinates uv. Then the minimum 
values of the function 

uvi2(xy)=M{P(xy); P(u+x, v+y)} (30) 

can be readily determined by examining the numerical 
values of the Patterson function at  all pairs of points 
xy and uWx, v-t-y, and noting the minimum value for 
each such pair. In order to have the origin of x and y 
in the resulting approximate electron-density map 
coincide with an inversion center, Fig. l0 (a) and (b) 
shows tha t  this minimum value should be recorded on 
the map of the minimum function at  ½u+x, ½v+y, 
instead of at  xy. This new map contains a set of discrete 
sampled values of the minimum function uvM2(xy ). 
This analytical method of forming the minimum 
function has the disadvantage of discontinuity, i.e. a 
discontinuous sampling of the minimum function is 
derived from a discontinuous sampling of the Patterson 
function. I f  the original point image at  u v in the 
Patterson synthesis does not lie exactly on a sampled 
value, one must either approximate it by choosing an 
image point on the nearest sampled value, or resort to 
a very tedious double interpolation in finding every 
resulting sample of the minimum function. 

A continuous procedure of finding M 2 requires a 
contoured Patterson map. A line whose ends are at 0 0 
and u v is first established as before and then moved 
parallel with itself over the entire surface of the 
Patterson map. One then records at positions corre- 
sponding to the midpoint of the line (but on a separate 
sheet) the minimum value of the Patterson function 
found at the two ends of the line. Of course, continuous 
recording is an impractical procedure. The general 
method can be rendered practical by recording the 
value of any contour encountered by either end of the 
line, provided that  the encountered contour is the 
minimum of the two values at the ends of the line. 
A simplifying procedure is to move the line parallel to 
itself with one end continuously on the contour of 
minimum value until the other end of the line crosses 
a contour of equal value, after which that  end controls 
for awhile. 

The theory behind this last method can be put into 
practical use by a scheme which amounts to pulling 
the two ends of the line together and examining the 
points at  the two ends at the same time. To do this, 
one prepares two Patterson syntheses, contoured pre- 
ferably in color. The two Patterson tracings are placed 
one over the other so that  any xy on one sheet and the 
corresponding u ~-x, v + y on the other appear together 
at a common point. As indicated above, this common 
point is preferably the middle of the line, namely, 
½u+x, ½v +y. The minimum value at  the continuum 
of all points of the pair of sheets is now the value of the 
minimum function uvM~(x, y). 
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As a practical procedure, the minimum function can 
be quickly contoured by tracing on a third sheet those 
contours from the two underlying Patterson maps 
which represent the smaller values at all v)ints. This is 
equivalent to drawing that  contour of a particular 
value from one of the two Patterson maps which is 
nearest a peak in the minimum function. That this 
procedure is correct can be appreciated by reference to 
Fig. 11. The diagram shows two peaks, one from each 
Patterson map, whose heights are shown in the third 
dimension. The horizontal plane is a contour level L 
at a particular value of the Patterson function. One 
observes that, at point a, the right peak has the 
minimum value, the left peak having a higher value. 
The contour of the minimum function in the neigh- 
borhood of H is therefore the Patterson contour a of 
value L nearest the highest value of the minimum 
function H, and not the value e, which is farthest from H. 
Similarly, b and not f is the contour outlining the other 
side of the minimum function peak H. 

¢d 

Fig. 11. 

By inverting Fig. 11 it can be demonstrated that  the 
minimum function can also be contoured by following 
that  contour of the two Patterson maps which is 
farthest from each trough in the minimum function. 

'The area within the lowest contour outlining troughs 
on one Patterson map (shaded in the middle diagram of 
Fig. 14) has the very interesting property of cancelling 
peaks on the other Patterson map which are not to 
become peaks of the electron-density map. In this 
way the minimum function reduces the n 2 Patterson 
peaks to the required n peaks of the electron-density 
map. In a similar way, all contour levels of one 
Patterson map modulate the features of the other 
Patterson map which have a higher level. 

As a matter of practical procedure it is well to limit 
the number of contour levels represented on the 
Patterson map to a few, say 4-7 levels. This spread 
should be sufficient to represent the electron-density 
spread of the atoms in the crystal, of course. Further- 
more, the routine contouring of the minimum function 
is much simplified if the two Patterson maps each 
comprise an area of 1½ cells, specifically 1 translation 
wide and 1½ translations long. One map should be 
drawn with the origin in the corner of a cell, the other 
with the origin in the center of the cell. When forming 
an M~ map based upon an inversion image, the origin 
of the M~ map occurs half-way between the origins of 
the two displaced Patterson maps. The selection of the 
area of 1½ Patterson cells, recommended above, 

assures that  a full non-centrosymmetrical pattern unit 
of the electron-density cell is obtained from a. single 
setting of the Patterson maps. 

The procedure just outlined for mapping the 
minimum function can be readily generalized. I f  one 
wished to derive a contoured map of the minimum 
function M~, it could be done by displacing p trans- 
parent copies of the Patterson map (with contour levels 
scaled, if necessary, as indicated below) so that  the 
origins of the several maps come to lie at the co- 
ordinates (with respect to the first map) of 

0 0 ,  7~1Vl, 7~2V2, . . . ,  7~_1 V~_ 1 . 

On a separate transparent sheet the minimum contour 
of the p maps is then traced according to the pro- 
cedures outlined above for contouring Mg. If  such 
a single-step method of forming the minimum function 
map M~ is utilized, the scaling of the contour levels 
must be in accordance with the coefficients C of (28). 

A more convenient way of deriving maps of the 
minimum functions of higher rank is by way of a step- 
wise procedure. A formal treatment of the theory was 
given in the last section in discussing combinatorial 
properties. The practical procedure is to form two M9 
maps, based upon two different centrosymmetrical 
image points, and then combine these by contouring 
the minimum of the two maps to form an M 4 map. 
When this is done, the correct value of 1/(2p) in (26) 
should be recognized by scaling the contours of the two 
maps appropriately. When the two M 2 maps to be 
combined are derived from the use of two different 
Patterson peaks, each caused by the 'interactions' of 
the same kinds of atoms, then the whole procedure 
simplifies in that  the M 2 maps are directly combined 
without any scaling of their contours being required. 

An important example of this is encountered with 
every crystal having more symmetry than mere centre- 
symmetry. For example, in any of the two-dimensional 
space groups isomorphous with plane point group 2ram 
(for example, p2mm, Fig. 12 (a)), the Patterson syn- 
thesis has a set of four rotation peaks and four reflection 
peaks (Fig. 12 (b)). One relation between these four is 
the trivial relation of centrosymmetry common to all 
Patterson syntheses. But rotation points not related by 
centre-symmetry in the Patterson correspond to two 
different 'interactions' between different pairs of 
rotation-equivalent atoms of the equivalent set. When 
one forms an M 2 map based upon one image, say that  
at uv, this map is, in general, different from the M 2 
based upon the image at ~v, although related by 
symmetry to it. These two maps may be designated 
uvM2(xy ) and r'vM~(xy) respectively. They can be com- 
bined to give a map of a minimum function of greater 
rank, namely, ~, r'~M4(xy ). To do this, one superposes 
the maps, and traces the minimum of the two. In this 
example, the two M s maps are formed by images based 
upon atoms glal and ~ea2 in Fig. 12 (a). These are 
related by a horizontal symmetry line. Accordingly, 
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two uvM2(xy ) maps are prepared, one is rotated 
about this horizontal line, placed so tha t  its edges 
coincide with the other *'vM~(xy), and the minimum 
of the two maps is then contoured. This whole 
operation is equivalent to using a single image- 
seeking function which seeks images of the quadri- 
lateral alag~l~ in Fig. 12 (a), whose apices are uv, u0, 
00 and 0v in Fig. 12 (b). The whole procedure could 
therefore also have been done in one step by taking 
tracings of the four Patterson maps P(xy), displacing 
them so that  they had origins at  uv, u0, 00, and 0v and 
then tracing the minimum contours from all four at  
once, as indicated in an earlier discussion. As a matter  
of practical procedure, tracing the minimum from more 
t h a n  two Patterson maps is not very easr. 
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Fig. 12. 

In a similar way, two M9 maps can be combined 
directly, provided tha t  they are based upon any two 
equal Patterson ' interactions '. These need not repre- 
sent ' interactions '  between pairs of atoms related by 
symmetry.  In this procedure all four atoms of the 
fundamental set are, however, of the same species. The 
increased rank p of the minimum function M4, so 
found, provides a now map which is closer to the 
electron density than either of the original M~ maps. 

Examples of the use of the minimum function 
(1) Derivation of an approximate p(xy) from P(xy) for 

berthierite, FeSb~S 4 

The crystal structure of the mineral berthierite, 
FeSb~Sa, offers a favorable vehicle for demonstrating 
the use of the minimum function in crystal-structure 
analysis. The three kinds of atoms in the structure, 
namely, Sb, Fe and S, contains 51, 26 and 16 electrons 
respectively, so that  electron densities roughly in the 

ratio 4 : 2 : 1  can be expected in the final electron- 
density map. Thus the ability of the function to 
approximate a considerable spread of electron density 
can be tested. Furthermore, this crystal has moderately 
large a and b translations, but a small c dimension. 
This feature permits testing a moderately largo 
electron-density projection area without the usual 
complication duo to overlap of atoms as soon projected 
through a thick slab of crystal structure. In other 
words, the (001) projection of this crystal offers an 
approach to a section through the three-dimensional 
electron-density function. 

Borthiorite is orthorhombic (Buorger, 1936), space 
group Pnam, and has four units of FeSb~S 4 in a cell of 
dimensions 

a = 11.44, b-- 14.12, c -  3.76 A. 
The space group Pnam projects on (001) as the two- 
dimensional space group p2gg. The symmetry elements 
of this group are shown in Fig. 13 (a). 
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Data for the intensities of hkO were obtained from 
a single procession photograph. The photograph was 
processed by the M.I.T. modification of the Dawton 
method, from which integrated intensities wore deter- 
mined. After correcting for Lorontz and polarization 
factors, a Patterson projection P(xy) was computed. 
The representative quarter cell of this is shown in the 
upper middle part  of Fig. 14. 

This Patterson was not interpretable by any standard 
methods, and oven the location of the heaviest atoms 
could not be fixed with certainty with its aid. The 
relation between the co-ordinates of any inversion 
peak and the glide-reflection satellites in a quarter cell 
of P(xy) for this symmetry is shown in Fig. 13 (b). A 
start  on the solution can be made by noting that  the 
quarter cell contains two antimony atoms, and that  
there are two sets of reflection satellites. These doter- 
mine four possible locations of rotation peaks, ac- 
cording to the relations shown in Fig. 13 (b). Two such 
locations, marked by crosses in P(xy) in the upper 
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middle of Fig. 14, are near more or less acceptable 
peaks, although not actually on their maximum 
positions. The best location is the lower left cross. 
I f  tMs peak and the two corresponding satellites 
are truly a set of 'interactions' within a sym- 
metrically related set of atoms, the two reflection 
satellite peaks should have weight 2, while the rotation 

p e a k  should have unit weight, a relation which is not 
obeyed. Such lack of harmony in the weighting of sets 

of Fig. 14. Now, a glide line runs vertically through 
the center of this map, as shown in Fig. 13 (a). Con- 
sequently the lower quarter cell should be the glide 
equivalent of the upper quarter cell. These two 
quarter cells can therefore be combined to form a 
map of an M4 function. To do this, the lower quarter 
cell is traced, laid directly over the upper quarter cell 
in reversed position (the glide operation), and the 
minimum contour of the two quarters traced. This 
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Fig. 14. 

of symmetrically related 'interactions' is commonly 
observed and may, perhaps, be attributed to differ- 
ences in the relative thermal motions of atoms related 
by different symmetries. 

Accepting the lower left cross provisionally as the 
correct location of a rotation (i.e. a centrosymmetrieal) 
' interaction', one can then set up the minimum function 
based upon the co-ordinates of this point plus those of 
the origin, namely, 0.297, o.llSM~(xy). The minimum 
function is then simply found by placing one trans- 
parent Patterson map over another, the origin of one 
being placed at the cross of the other. By contouring 
the minimum, as described in the last section, the large 
M~ map is derived which is shown in the upper left 

results in the M 4 map shown below it in Fig. 14. Such 
a combination can always be made in crystals having 
greater symmetry than merely an inversion. 

Some of the major features of the distribution of 
atoms in the cell are already plain in this M 4 map. The 
original Patterson peak at the lower left cross has given 
rise to a heavy atom at about 0.147, 0.060, and also 
another large peak of about equal magnitude at about 
0.040, 0.384. The last is obviously to be interpreted as 
the other antimony atom of the quarter cell. Its 
location is consistent with the upper right cross of 
P(xy) in Fig. 14. Using this cross as an image point, 
another M~ can be graphically derived, namely, 
0.0s0, o.2sSM2(xy). This is shown in the upper right of 
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Fig. 14. The upper and lower halves of this are com- 
bined to form an M 4 map, as in the last case. The result 
is shown just below 0.080, o.~3ZM2(xy). 

Finally, the two M4's can be combined to provide an 
Ms, specifically 0.~9~, 0.118; 0.080, o.~a3Ms(xy). This is shown 
at the middle bottom of Fig. 14. This function is a 
sufficiently close approximation to the electron density 
so that  all the atoms of the crystal structure can now be 
identified. The map of M s shows two large peaks of 
relative weight 4, one peak of relative weight 2, and four 
peaks of relative weight 1. These are obviously to be iden- 
tiffed with 2 Sb, 1 Fe and 4S, respectively. That this 
is at least approximately the correct structure can be 
demonstrated by comparing the original precession 
photograph with the fly's-eye photograph based upon 
the atom locations and identifications given by M s . 
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(a) (b) 
Fig. 15. Comparison of the map of the min imum function 

Ms(xY ) with the map of p(xy) for berthierite. The latter,  
shown at the right, was prepared by using the measured 
I F  I's together with phases based upon the a tom location 
of Ms(xy ). The Fourier synthesis is a photograph of the 
synthesis produced by the Pennsylvania State College 
K-RAC, by courtesy of Prof. Ray  Pepinsky. 

(2) Derivation of an approximate p(xy) from P(xy) for 
claudetite, As20 a 

The space group of the mineral claudetite, As20 a, is 
P21/n, and its cell dimensions are 

a-- 5-26, b-- 12.87, c-- 4.54 A., f l= 93 ° 49'. 

This cell contains 4As903. Space group P21/n projects 
on (001) as the two-dimensional space group p2gg. The 
symmetry of the projection and its Patterson are the 
same as those shown in Fig. 13. 

Dr Alfred E. Frueh is investigating the structure of 
claudetite and has kindly supplied me with numerical 
values of the Patterson projection P(xy), shown in 
Fig. 16 (a). I have deduced an approximate electron 
density for this projection by minimum-function 
methods• The start was an acceptance of the location, 
marked on P(xy) by a cross, as a rotation peak sub- 
stantiated by reflection satellites. This was the only set 
of features of the Patterson projection which was sub- 
ject to interpretation• The solution followed steps 
described in detail under the discussion of berthierite. 
The end-result is a map of the minimum function 
Ms(xy ) shown in Fig. 16 (b). 

Dr Frueh has derived the electron-density projection, 
p(xy), by methods not involving image-seeking 

functions. His map, which he has kindly allowed me 
to reproduce, is shown in Fig. 16 (c). No attempt is 
made here to discuss the locations of atoms in the map; 
attention is merely called to the general agreement of 
the topography of Ms(xy ) and p(xy). 

In Fig. 16 (d) there is presented for comparison a map 
of the product function ~/[I2(xy ) for claudetite. This 

(a) 

(b) 
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(c) 

o 

(d) 
Fig. 16. Image-seeking functions applied to the interpretat ion 

of the Pat terson projection of claudetite, monoclinic As203. 
The symmetry  relations are the same as shown in Fig. 13. 
(a) Quarter cell of P(xy),  prepared from numerical da ta  
supplied by Dr Alfred E. Frueh. (b) Map of the min imum 
function, Ms(xy ). (c) Electron-density map, p(xy), as found 
by Dr Alfred E. Frueh by methods not based upon the use 
of image-seeking functions. (Used by permission of Dr 
Alfred E. Frueh.) (d) Map of the product  function, ffII~(xy), 
based upon the location marked by the cross in P(xy).  
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map is based only on a line image generated by con- 
necting the location of the cross marked in P(xy)  with 
the origin. The resemblance of this product-function 
map with the electron-density map is reasonably good, 
especially when it is realized that  it is only a H9 map. 

Remarks on other current methods of inter- 
preting Patterson maps 

Since the writer demonstrated that  vector sets can be 
interpreted, a number of supposedly different rival 
methods have arisen which have also been proposed as 
devices for solving Patterson maps (clastre & Gay, 
1950 a, b, c; Garrido, 1950 a; Robertson, 1951; McLach- 
lan, 1951). Most of these have a common feature; they 
deal with Patterson peaks as ff they were points on 
a vector set consisting of discrete points. These peaks 
are treated by a geometrical device (usually a trans- 
lation) which is merely another description for finding 
images. Such methods are therefore not different, in 
essence, from those first described in VS, except that  
a different language is used in the discussion (Mauguin, 
1950). They are accordingly no more powerful than 
vector-set methods used for discrete points. To use 
them for interpreting Patterson maps, the Patterson 
peaks must, in essence, be regarded as a map of weighted 
points. These methods are not useful as they stand in 
interpreting a typical Patterson synthesis because, as 
pointed out earlier in this paper, the high values of a 
typical Patterson synthesis are often not single peaks. 
In fact, they usually arise owing to a coalescence of 
many peaks. To treat such a composite feature as 
analogous to a point on a vector set of discrete points is 
most misleading. 

The 'vector convergence method' (Beevers & 
Robertson, 1950; Robertson, 1951) can be discussed 
along more quantitative lines. In its best form it 
appears to be equivalent to using a sum function as an 
image-seeking function. In other words, as the image- 
seeking polygon roves the Patterson synthesis, the sum 
of the Patterson values at its several vertices is con- 
tinuously laid down. If  this function is studied with 
respect to a line image, as in Fig. 8, it will be seen that  

every time the roving line encounters a point of the 
vector set at either of its ends, it lays down a point of 
weight either a or b. There are therefore 2n 9 solution 
points laid down, of which n (plus n - 2  more for line 
images only) coincide and have weight (a + b). Clearly, 
even with a vector set of discrete points, the vector con- 
vergence method provides a much more remote 
approximation to the electron density than either the 
product function or the minimum function, which, in 
this simple case give an exact solution for the electron 
density. 

BEEVERS, 
3, 164. 

BUEROER, 
BUERGER, 
BUERGER, 
B~ ERGER, 

34, 277. 
BUERGER~ 
BIYERGER, 
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