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In order to apply vector-set methods to the solution of Patterson syntheses, it is first pointed out
that the Patterson synthesis is the vector set of the electron density provided that the Patterson
function is defined as an integral and not as an average of the electron-density product. With this
proviso, vector-set methods can be applied to solve the Patterson synthesis for the electron density.
The most appropriate vector-set method is the synthesis of the vector-set points into n identical
n-gons. To do this with Patterson syntheses, one sets up a function of the Patterson values at the
vertices of an image polygon, called an image-seeking function. Such a function has the property of
attaining a high value when the polygon is in image position, but zero when it is not. Two such
functions have been proposed, a product function and a minimum function. The properties of these
functions are discussed. These functions bear an inequality relation to the electron density, and the
inequality is strengthened by combining functions to produce others of greater rank. Application of
this theory leads to a map of the function which is essentially an approximate map of the electron
density. The theory is illustrated by application to the solution of the structure of berthierite,
FeSb,S,, from its Patterson projection. By combining maps of the minimum function for this
crystal, one of rank 8 is readily attained which is sufficiently close to the electron density so that
seven atoms in the asymmetrical unit are clearly distinguished. These have peaks of relative ranks
4:2:1, which is approximately the relative electron counts of Sb, Fe and S, respectively.

The relation between these methods and those of Clastre & Gay, Garrido, Robertson, and
McLachlan, is briefly discussed. The methods of these authors are the equivalents of image methods
as applied to sets of discrete points, although a different language is used to describe them. They
have not advanced beyond methods for decomposing vector sets of discrete points, and cannot be
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expected to solve typical Patterson syntheses.

Introduction

For many years the opinion was held that the direct
solution of crystal structures by X-ray means was, in
general, impossible because, although the amplitudes
of the diffracted waves could be experimentally deter-
mined, their phases could not. While carrying out some
crystal-structure studies during the early part of the
recent war, the writer realized that the impossibility of
determining phases experimentally did not necessarily
imply the impossibility of determining crystal struc-
tures. At the Lake George meeting of the American
Society for X-ray and Electron Diffraction in June
1946, it was shown that there was a very simple relation
between the electron-density map and the Harker
synthesis (Buerger, 1946). After a brief excursion into
the prediction of phases through the implication re-
lation and aided by the ‘squared crystal’ concept
{Buerger, 1948 a, b), the writer’s interest was turned to
the corresponding problem in crystal space rather than
in Fourier space. In this study it immediately became
obvious that the Patterson synthesis could be solved.
An early attempt to relate the Patterson map to the
electron-density map had been made by Wrinch (1939).
She simplified the problem by considering a set of dis-
crete points and its Patterson representation, which
may be called the vector set. A major contribution was
the introduction of the notion of an image. Wrinch

showed that one can find in the vector set the several
images of a point, a line, or even a triangle, these com-
prising sets of one, two or three points which occur in
the original set of points. She also discussed the
analysis of a vector set for the original set of points,
but did not present a technique for performing an
analysis in a general case.

Building on Wrinch’s fundamental work, the writer
developed several general methods for completely
analyzing a vector set of points. These methods were
first presented in a series of lectures on vector methods
(Faculty of Philosophy, University of Rio de Janeiro,
December 1948), and as a contribution entitled ‘The
status of crystal-structure analysis’ which formed part
of a symposium on the Results of Crystal Structure
Studies (Pittsburgh Meeting of the American Crystallo-
graphic Society, June 1949); they appeared in print
in March 1950 (Buerger, 1950a).* The general method
was immediately extended so that it could be applied
to the transformation of true Patterson syntheses to
electron-density maps (Buerger, 19506, d).

In order to apply vector-set methods to situations
arising in actual crystal-structure analysis, two de-
velopments were needed. It does not necessarily follow

* The notation and theory of this ‘Vector Set paper’ are
frequently referred to in the following discussion. For brevity
it is designated by the symbol VS.
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that because a vector set of discrete points can be
solved, the Patterson synthesis of a crystal can be
handled by the same methods. It is necessary to
demonstrate the connection between a set of discrete
points with its vector set, on the one hand, and the
continuously variable electron density of a crystal,
with its continuously variable Patterson representa-
tion, on the other. In the second place it is necessary
to find a mechanism for finding images in the Patterson
synthesis.

Extension of vector-set theory to continuously
» variable electron densities

It has been shown (Buerger, 19500, d) that the vector
. set of a continuously variable electron density is indeed
the Patterson synthesis, provided that the Patterson
synthesis is defined in a particular way. In the original
derivation of his function (Patterson, 1934, 1935),
Patterson chose the average value of the electron-
density product separated by a vector having com-
ponents xyz, as the vector ranged over the cell. To
emphasize this averaging characteristic, Patterson
designated his function A(xyz). If one starts with an
electron density represented by the Fourier series

plryz) =%, % % ? Fe-2milhatiy+la), 1)

then Patterson’s averaging function comes out to have
a Fourier representation

A(xyz) =%2 % Ek: % e e—21li(hz+ky+lz). (2)

On the other hand, the vector set of (1) turns out to be
simply the integral of the electron-density product
over the cell volume. The Fourier representation of
this, which will be designated P(xy2) to distinguish it
from Patterson’s original average, is

P(ryz)= % % % % 2 g—2milhatky+la), 3)

Note that this synthesis is exactly the same as the
Fourier representation of the electron density except
that F'¥s are substituted for F”’s. It is therefore identical
with the writer’s ‘squared crystal’ (Buerger, 19485).
The relation between the vector set of the electron
density and the original Patterson averaging function
is simply 1
P(xyz):—I}A(xyz). 4)

Scheme for analyzing Patterson syntheses
suitable to automatic application
Havingshown that the Pattersonsynthesis isessentially
the vector set of the electron density, it becomes
possible to analyze Patterson syntheses by vector-set
methods. This implies that one hopes to find suitable
functions which will automatically find images in a
Patterson synthesis. The details of setting up such

functions are reserved for a subsequent section.
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The two general methods of solving a vector set are
to synthesize its points into either a ‘spectrum of
polygons’ (VS, p. 90) or into a set of # identical n-gons
(VS, p. 92). The latter method is easily adapted to the
solution of Patterson syntheses, and is particularly
suited to the derivation of a quantitative relation
between electron density and Patterson synthesis in
the form of an inequality which increases in power as
the n-gon is synthesized in successive stages from a
‘2-gon’ (a line) to an n-gon.

In VS (p. 89) it was pointed out that a ‘vector set
can be synthesized into images of the primitive set in
each of its points’. This is illustrated analytically by
expressing the vector-set matrix asimages of the n-gon:

aa ab ac ad ae ala+b+ct+d+e))
ba bb bc bd be blat+b+c+d+e)
ca ¢cb cc cd ce= clat+b+c+d+e)p, (5)
da db dc dd de d(@a+b+c+d+e)
ea eb ec ed e ela+b+c+d+te)
—(a+b+c+d+e)a
—(@+b+c+d+e)b
=—(a+b+c+d+e)c . (6)
—(a+b+c+d+e)d

—(a+b+ct+d+e)e

The right side of (5) can be described as the image of
the n-gon (a+b+c+d+e) as seen from its separate
points a, b, ¢, d and e. The rearrangement given in (6)
follows by virtue of relation (4) of VS. The right side
of (6) can be described as the image of the separate
points a, b, ¢, d and ¢, as seen from the inverse polygon,
the inverse character being required by the negative
sign. These relations can be given very simple
geometrical illustrations, shown in Figs. 1 and 2. In
Fig. 1 is shown the points of a vector set assembled
(‘synthesized’) into a set of nxn-gons (n being 5 in the
illustration). In order to put the discussion in some-
what more usual language than that used in VS, let
each of the terms in the vector set on the left of (5)
represent a vector. Then the right side of (5) can be
interpreted to mean that these vectors can be gathered
into sheafs of vectors. If some arbitrary point in the
polygon is taken as representing the position of the
polygon, then each sheaf of vectors can be repre-
sented by a single vector to this arbitrary point. Thus,
instead of all the vectors from the origin to each point
of the vector set, one can bulk together sets of points
to form polygons, and substitute for each sheaf of
vectors to the vertices of a polygon, a single vector
from the origin to the representative point. This set of
vectors is represented in Fig. 1. Fig. 2 illustrates that
this same set of vectors determines a set of points
which is the inverse polygon. This corresponds to the
right of (6).

To see how this relation permits the solution of a
vector set, assume, first, that the solution of the vector
set is known. This means that in Fig. 1 the arrangement
of points constituting one polygon is known. If this
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n-gon is permitted to rove over the vector set, it en-
counters n positions where its points register with the
points of the vector set. These positions are indicated
by the crosses of Figs. 1 and 2. The set of such positions
constitutes the inverse solution, and, furthermore, the
vector matrix (6) shows that if the weighting of the
images of the vector set is taken into account (Buerger,
19505, d), the weighting of the points determined by
the process, Fig. 2, also gives a correctly weighted
solution of the vector set.

In this discussion it appears merely that if one knows
the solution of the vector set and uses it in the above
process, the solution is fed back in the form of the
inverse solution. Actually the full solution has been
assumed in the above discussion only for the purpose of
illustrating the nature of the process. The process is
much more powerful than this; for, if any minimum
fragment of the solution is known, the entire solution
can be found by the same means. That this is so can be
demonstrated analytically by writing down, in matrix
form, the process of solving a vector set by the pro-
cedure of synthesizing its points into a set of 2-gons,
3-gons, 4-gons and eventually n-gons. This stepwise
synthesis is as follows:

aa ab ac ad ae aax ab ac a(d+e)
ba bb bc bd be ba bb bc b(d+e)
ca ¢b cc cd ce = ca cb cc c{d+e)
da db dc dd de da db dc d(d+e)
ea eb ec ed ee ea eb ec e(d+te)
aa ab a(c+d-+e)

ba bb b(c+d+e)

= ca ¢b clc+d+te)

da db d(c+d+e)

e eb e(ct+d+e)

ae a(b+c+d+e)
ba bb+d4c+e)
= be c(b+d+cte)
bd d(b+c+d+e)
be e(b+ctd+te)

ala+b+c+d+e)
bla+b+c+d+e)

= clatb+ct+d+te)
da+b+c+d+e)
efa+b+c+d+e) (7

This is merely a compact review of (9), (14), (15) and
(16) of VS. It is the analytical representation of the
process of collecting points of the vector set first into
a set of line images, then adding a point to each line
image to change them into triangle images, then
adding a point to each triangle image to change them
into quadrilateral images, then adding a point to each
quadrilateral image to change them into pentagon
images. For a fundamental set with =5 points, this
exhausts the points of the vector set, i.e. every point
of the vector set is a member of one of the five pentagon
images, each of which constitutes a solution. But for
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each stage in the process, a relation similar to (5), and
therefore (6), is true. In other words, if any kind of
image with #n>2 can be found in the vector set, the
complete set of such images can be found. If the loca-
tion in each such image of the set is spotted by means
of a point associated with the image and having the
weighting of that image, then the set of such points is
the correctly weighted inverse solution. A graphical
illustration of this is given in Figs. 3 and 4.

Fig. 1.

Fig. 3.

Fig. 4.

It should be observed that, if a line image is esta-
blished and the line moved over the vector set parallel
to itself, it might encounter two points fortuitously
related so that they determine an equal and parallel
line segment. If this accidental situation should arise,
then the above procedure would lay down a false
location of a line image owing to a purely fortuitous
relation between a pair of points in the vector set. Such
a registry of an image with a few accidentally related
points of the vector set becomes the less probable the
larger the number of points in the image with which
registry must be simultaneously achieved. Thus, the
success of the process described becomes the more
certain as the value of p of the p-gon image becomes
greater, attaining a maximum at p=n. This permits
one to increase the certainty of a correct solution by
exploring for the solution in stages. Thus, one would
first select any point, connect it with the origin and
thus establish a line. The images of this line can be
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found, and their weighted locations establish a tenta-
tive solution. If, for the reason mentioned above, or
for reasons still to be discussed, there result too many
points in the solution to conform to the » points of the
fundamental set, the number of points in the tentative
solution can be reduced by selecting one and then
testing it by adding it to the original line in the solution.
This constitutes a triangle, whose # images must occur
in the vector set if the triangle is truly a part of the
solution. If so, the new polygon (improved from a line
with p=2 to a triangle with p=3) can be used to rove
over the vector set. This three-point polygon is less
likely to encounter locations of fortuitous registry with
the points of the vector set than the line. But if there
are still too many positions of registry, i.e. if the
solution contains more than the n points of the funda-
mental set, then a point of the solution can be selected
to add to the triangle to transform it into a quadri-
lateral, which can be used to explore the vector set for

Fig. 5.

registry. Proceeding in this stepwise manner, a tenta-
tive solution established by line images can be pyra-
mided to a solution certified by (@) exhausting the n?
points of the vector set, and (b) by finding » locations
of an n-gon which (¢) themselves have the arrangement
of the correctly weighted inverse n-gon.

At this point it is desirable again to call attention
(VS, p. 92) to the fact that it is impossible to distin-
guish between right-handed and left-handed line
images. If, therefore, the fundamental set is non-
centrosymmetrical, the first exploration for a solution
with line images yields both a right-handed and a left-
handed solution which are intermixed (Fig. 5) (Buerger,
1950 ). These are joined by the line whose images in
the vector set have been used for the solution. To rid
the tentative solution of one of the unwanted enantio-
morphous solutions, one need merely add any point
of the tentative solution to the original line images,
thus transforming them into triangle images (Fig. 4).
In this general case, such triangle images are either
left-handed triangles or right-handed triangles, de-
pending on the choice of the added point. As this
triangle roves the vector set, only one solution is found
to be in registry. In this way an unwanted enantio-
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morphous solution can be eliminated (Buerger,
1950 ¢, d).

The whole matter of enantiomorphous solutions can
be avoided if the fundamental set is centrosymmetrical,
provided one chooses as the original line for image-
seeking a line from the origin to a vector point repre-
senting an ‘interaction’ between centrosymmetrically
situated points in the fundamental set. Actually, thisis
a special aspect of the multiple-image situation, which
is about to be discussed.

Multiplicity of Patterson peaks

To make a successful choice of line for an initial image
requires a knowledge of the relative weights of the
Patterson peaks. Patterson peaks may have multiple
weight fortuitously, owing to the chance coincidence
of two or more peaks, or this superposition may occur
with exactness due to symmetry. The multiplicity due
to symmetry is discussed in implication theory
(Buerger, 1946). As a brief comment it may be noted
that all inversion peaks (those due to the ‘interaction’
of two atoms which are equivalent by inversion) are
single peaks, that reflection peaks (those due to the
‘interaction’ of two atoms which are equivalent by any
reflection symmetry) are single when the plane is
parallel to an odd-fold axis but double when parallel to
an even-fold axis, whereas rotation peaks (those due
to the ‘interaction’ of two atoms which are equivalent
by rotation symmetry) are single for certain rotation
operations, multiple for others.

The multiplicity of a Patterson peak can thus be
judged by symmetry. It can also be judged by com-
parison with the origin peak. This origin peak has a
volume Y} Z?, where Z; is the number of electrons in the

j

Jjth atom and the summation is taken over the crystal
cell. Since this volume is known, the volume of any
peak on the Patterson synthesis can be calibrated in
terms of it. Obviously, if a particular peak has a volume
Z?, it is a single symmetrical interaction, whereas if it
has a volume of 2Z%, it is a double symmetrical inter-
action, etc.

Solutions resulting from multiple images

The penalty for choosing a multiple peak for forming a
line to be used as a first image is to incur a multiple
solution (Buerger, 1950 5). That this is so is evident by
making two points of the vector-set matrix the same
point. Suppose that in the fundamental set there are
two pairs of points so arranged that the vector relating
the points of one pair is the same as the vector relating
the points of the other. The two vectors coincide in
vector space, and the point at the end of the vectors is
a multiple point. The line connecting this point with
the origin has two sets of images. One is the set of
images of one of the parallel lines in the fundamental
set, the other is the set of images of the other line in the
fundamental set.
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The formal treatment of this is as follows. Let the
points of the crystal set be a+b+c+d+e, and suppose

—_ =
that the vector bc=de. Then the points bc and de
coincide in the vector set so

be=de. (8)
If the origin point is added to both sides of this equality,
there results bb + b —dd + de. ()

Expressed in the form of line images, this is equivalent
to b(b+c)=d(d+e). (10)

This means that the image of the line (b+c) is the
same if seen from b as the image of the line (d+e) if
seen from d. In other words, these line images coincide.
But, according to the image interpretation of the
vector-set matrix, each such line also has its column
of images, i.e. all the lines blocked out in the following
matrix are parallel but distinet, except the two which
are identical according to (10). These are tied together:

aa | ab ac I lad aeJ

ba |bb  bcly|bd  be]

co lcb cc H |cd ce | >. (»11)
do [db  do|Ydd  de]

ea Leb ecl i ed di] )

This decomposition shows that if one should select the
line bb +be, i.e. b(b+c), as the initial line image, more
than one column of images would be found to be the
apparent set of images. But this does not exhaust the
total number of lines found, for the lower left-hand pair
of points, da + ea, is centrosymmetrical with the upper
right-hand pair, ad +ae, and consequently represents
a parallel line. The total number of lines found is better
demonstrated by synthesizing the points of the matrix
into a certain set of line images and their centrosym-
metrical equivalents. If there are no coincident vectors,
the number of parallel, equal lines for a fundamental
set of n =5 is four, plus four more centrosymmetrically
related lines:

aa ab ac ad ae

ba bb be bd be

ca cb cc cd ce > . (12)
da| [ab] |de| [dd]  de]
ca cb cc cd ce

- /

But if degeneracy (8) with its concomitant (9) and (10)
occur, then the following ten lines are equal, parallel
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and apparent images:
ae l
e
ce| ¥ (13)

)
E
3
S
")
S

These relations for vector sets based upon fundamental
sets without and with parallel vectors are illustrated
in Fig. 6.

(0 (@)

Fig. 6. The consequences of decomposing a vector set by
using a multiple line-image. (a) A fundamental 5-point set
without parallel vectors. (b) The vector set of Fig. 6 (a).
The full lines are the eight true images of a line. (c) The
fundamental set of Fig. 6 (a) altered by shifting one of the
five points so that the set contains equal, parallel vectors.
(d) The vector set of Fig. 6 (c). The full lines correspond to
the line images shown in full lines in Fig. 6 (b). The broken
lines, which were distinct in Fig. 6 (b), now form part of a set
of eight parallel and equal lines, the additional lines arising
from the multiple nature of the vector point used to form
the initial line image. The double weighting of points arises
from the migration of points of Fig. 6 (b) in the directions
of the arrows.

In solving a vector set or Patterson synthesis, one is
faced with the selection of the appropriate peak for
beginning the decomposition. A common example of
the situation is illustrated in Fig. 7, which represents
a simple centrosymmetrical fundamental set. Note
that the points related by the inversion determine a
vector, shown as a full line, which is, in general, parallel
to no other vector. In the vector set (Fig. 7(b)) this
‘interaction’ is single. If this single point is connected
with the origin, and the images of the resulting line are
used to decompose the vector set, a single solution
(Fig. 7 (c)) results. On the other hand, ‘interactions’
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between points not related by the inversion in Fig. 7 (a)
(in other words, unsymmetrical ‘interactions’) deter-
mine a double point in the vector set (Fig. 7(b)). If
such a point is connected with the origin and the images
of the resulting line are used to decompose the vector
set, a pair of intermixed solutions results. These
necessarily have the original line in common. These two
solutions are translated equivalents. Since a trans-
lation combined with an inversion is another inversion

& 2 2
N ; b 2 o
::‘ 2 3
AN 2 z
< ; ° >0
~ ; N
N : 2 N
N, : 3z
2
:
.
: 2 2
2
2
(2) (b) -
° °
o

Fig. 7.

located at half the translation from the first inversion,
it follows that such a double solution contains the true
inversion center of the solution plus a false center
which relates the two solutions. A similar symmetrical
duplication of solutions occurs with other symmetry
elements.
Image-seeking functions

One can apply the theory just discussed in one of two
ways. The rather obvious way is to attempt to locate
peaks in the Patterson synthesis and then find images
defined by them by some graphical method. Such a
scheme is difficult of application because many
Patterson peaks are ordinarily swamped by back-
ground and hence not distinguishable. Furthermore,
regions of high value of the Patterson function are
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frequently collections of unresolved peaks. The practi-
cability of using such methods is increased by trans-
forming the original Patterson synthesis into a
‘sharpened Patterson’ synthesis (Patterson, 1935;
Buerger, 1950b), or a ‘focused’ synthesis (Buerger,
1950 ¢). The effect of this transformation is to provide
greater resolution of the n* peaks in the Patterson cell.

An alternative and preferred method is to set up a
function which will automatically perform the job of
finding the locations of images in the Patterson
synthesm Such a function is appropriately called an
tmage-seeking function. To appreciate the desired
characteristics of such a function, return to Fig. 1, and
suppose that the solution is known, i.e. that one knows
the relative positions of the vertices of one solution
polygon. These relative positions can be defined by the
origin plus (n—1) other points, specifically 000,
UV Wy, UpVpWy, UgVsWsy, UyVw, in this case. Let this
polygon be moved to another location of the cell by
a translation whose components are zyz. In the new
location the co-ordinates of the vertices are

0 0 O+2yz

U v Wy +2Y2

UgVaWo+2Y2

UgVgWg+ X Y2

UV Wy + Y2
First suppose, for clearness, that the Patterson
synthesis has the simple form of a vector set of discrete
weighted points which do not coincide with one another.
A desirable image-seeking function would be some
function of the Patterson synthesis at the co-ordinates
given in (14) such that the function would have a value
of zero when the translation zyz does not cause the
original polygon to coincide with one of its images,
but which would have a high value when the trans-
lation zyz does cause coincidence to occur.

(14)

The product function

Two rather obvious functions of this nature have
been suggested and tried. One kind may be termed
a product function (Buerger, 1950b, d). This is simply
the product of the values of the Patterson function at
the p vertices of the image-seeking polygon. As the
polygon (pentagon in Fig. 1) is allowed to rove over the
volume of the Patterson cell, z, ¥ and z of (14) assume
all values. The product

y(xyz)= P000+2xyz)

X Pluyvyw; +2yz)

X P(uyvyw,+2y2)

x P(ugvzws +2y2)

X P(u,v,wy+2y2) (15)
has zero value for any xyz unless all five points coincide
with a pentagon image of Fig. 1. When coincidence
does occur (with appropriate values of xyz) then the
product has a high value, and this is specifically related
to the electron density p(xyz) through the weighting
of the image (Buerger, 1950d).
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One does not ordinarily know the full solution when
starting to interpret a Patterson synthesis. Usually one
can only recognize a point, say at u,v,w;, as having
single weight, and one wishes to construct a function
which seeks an image of the line formed by connecting
this point and the origin (Fig. 8 (a)). The partial product
composed of the first two terms of (15), namely,

My(xyz)= P(000+2xyz)

x P(u, v, w, +2yz), (16)

seeks and finds the images of this line, since it has zero
value whenever the translation xyz does not superpose
the original line on one of its images. Except for the
original line from 000 to w,v,w,, all such non-zero
products are related to the electron density at the
corresponding point in the fundamental set by the
simple relation (Buerger, 19504)

1
= Pluyo, ) Vg(zyz2).

In case overlap of Patterson peaks does occur, as it
usually does in the Patterson synthesis of a real crystal,
the value of one or more terms in II is fortuitously
increased; consequently the right of (17) is increased.
But the inequality

plxyz)= (17)

VI(yz) (18)

plxyz) <

still is valid.

This relation is readily generalized. If an image-
seeking product-function is constructed of » terms for
the purpose of seeking images of p-gons (Fig. 9), the
relation between the electron density and the product
function is

P(uyv,wy)

1

= P(uy v, w,) X P(ugvawy) X ... X P(u,v,w,)

Xp JH,,(xyz). (19)
When any image found by (19) includes the origin as
one of its vertices, the inequality is somewhat less
powerful, since one of the terms in Il (xyz) is the
weight of the origin peak. But these very images
merely feed back information which has been put into
the original image-seeking function, so that no real loss
of information occurs owing to this circumstance.

The writer,* and subsequently Patterson,t have
made actual use of the II, function in solving two-
dimensional Patterson maps of crystals whose struc-
tures had previously been unknown. The results of
applying the IT function appear to be good in instances
where the structure of the crystal is somewhat open,
and also when used with crystals having a few heavy
atoms embedded in a structure of lighter ones. The
product function has certain disadvantageous features,

p(xy2) <

* Demonstrated as part of a lecture on the interpretation
of the Patterson synthesis given to the North American
Philips Diffraction School, 6 October 1950.

1 Informally presented as part of a discussion of a paper
given at the Washington meeting of the American Crystallo-
graphic Association, 15 February 1951.
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and also it is more difficult to derive than the minimum
function, a discussion of which follows in the next
section.

When a tentative solution is achieved by (18), the
strength of the inequality can be improved by adding
to the 2-gon image used in forming function (16), one
or more new points suggested by the solution. Having
started the solution with function (16), one is then able
to use function (15). This provides the more powerful
inequality (19). In other words, the electron density
of the crystal can be approached by successive approxi-
mations. This general process is further discussed in the
next section.

ac
(o]

%/

BAE (12~ b N\,

X

o (2) (b)

Fig. 8
ac
[0}
ab ec b
bd bded’+ bde
2
db be bdet+bde (4=~}
de {b E(n’—b’)} bdee’ +bde
wo o2 Ocd {ez (=)
o) B
© bdea’
O ca

(a) ' (b)
Fig. 9.

The minimum function

An unfortunate feature of the product function is
caused by the continuous background of the Patterson
synthesis. As the polygon roves this synthesis, the
product function has a background value when all
vertices of the polygon are on background. But when
one or more of its vertices make chance registry with
Patterson peaks, the function has a higher-than-back-
ground value. Such chance coincidences, therefore,
produce small false peaks in the map of the product
function which do not correspond to any feature on the
electron-density maps.

A more desirable kind of function would be one
which had a continuously low value so long as even one
vertex of the polygon was on background, since such
a circumstance corresponds with not finding an image
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of the polygon. The writer has devised the minimum
Sfunction (Buerger, 1950¢) for this purpose. The
minimum function is defined as the minimum value of
the several Patterson values (weighted, if necessary)
which occur at the vertices of the polygon used to
search for images of itself. Let the original polygon
have p vertices at 000, u;v,w;, UyVw,,..., ULV, W,.
When the polygon is translated by zyz, its vertices
have p sets of co-ordinates similar to those listed in (14).
The minimum value, designated by the symbol M,
may then be represented by

M (xy2)=M{P(000+zyz);
K, P(u,v,w, +2y2);
Ky P(uyv,w,+xy2);
K,  Pluy v, 3w, 1 +2y2)}, (20)

where the K’s are constants which normalize the
relative values of the Patterson function at the several
vertices of the polygon to the same value. The reason
for this normalization is as follows: The exact registry
of a polygon with an image location depends equally on
the registry of each vertex, regardless of the value of
the Patterson function at that vertex. To assure equal
representation of each point in the operation of the
minimum function, the Patterson values at the several
points are scaled to normalize them to the same value.
For example, if the polygon is a+b+c+d+e, the
Patterson values at the vertices are proportional to
a,b, ¢, d and e, respectively. They can all be normalized
to @ (for example) by multiplying the Patterson
‘weight’ at b by a/b=K,, at ¢ by ajc=K,, etc. The
polygon has now been transformed into one in which
all vertices have the same weight.

A simple and convenient application of the minimum
function is to images composed of centrosymmetrical
‘interactions’, i.e. ‘interactions’ between atoms which
are centrosymmetrically situated in the crystal
structure. The relation between the electron density
and M, is very simply demonstrated by reference to
Fig. 10. Fig. 10(a) shows a simple centrosymmetrical
fundamental set, while Fig. 10 (b) shows its Patterson
function. Note that all centrosymmetrical ‘inter-
actions’, namely, aa, bb and cc, have single weight,
whereas all others are multiple. If a line from the
origin to aa is established as a line whose images are to
be found, one notes that the minimum values at the
ends of the line when in image position have the very

simyple form oM (xyz)=2p.p(xy2). (21)

The only exception to this occurs for the images con-
taining the origin, for which the coefficient 2 in (21)
does not appear owing to the unit nature of point aa.
Since such images merely feed back information put
into the formation of the minimum function, no real
loss of information is incurred by this exception.
Alternatively, the image bb could be connected with
the origin to form a line, and the images of this line
could be sought. Fig. 10 (¢) shows that the minimum
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values at the ends of the line are related to the electron
density by oM, (wyz)=2p,p(zy2). (22)

If the vector set is the Patterson synthesis of a real
crystal, then, in general, overlaps of ‘squared atoms’
(Buerger, 1948b) occur in the Patterson synthesis. In
such instances (21) and (22) have enhanced values on
their left-hand sides, so that they become inequalities
of the same general form. The information from two

(<4
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Fig. 10.

such inequalities can be combined to give a more
powerful inequality, thus:

1
— *My(xyz) = p(xyz), (23)

2p,

Lodwyn) oy, (24)
2p,

i%(xyz)}mxyz). (25)
20y
The reason why (25) is more powerful than either (23)
or (24) is that the left-hand member of (23} may have
a lower value at z,,2, and the left-hand member of
(24) may have a lower value at z,y,2z,. Since (25)
combines the minimums of both relations, its left-hand
member has the lower value at both z,y, 2, and z,y,2,.
The graphical representation of (23) is given in
Fig. 10 (b), that of (24) in Fig. 10 (c). The combination
of (23) and (24), namely, (25), is represented in
Fig. 10(d). This shows that the combination of two
minimum functions which each seek line images is
equivalent to a minimum function which seeks quadri-

1
M{—*M,(xyz);
{2pa i
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lateralimages. Asa generalization of this combinatorial
relation, it can be stated that the minimum of two
appropriately weighted minimum functions is a new
valid minimum function of higher rank and greater
power. Thus, (23), (24) and (25) illustrate the com-
binatorial relation

1 1
M{ “My(xyz); 5—"My(xyz); ="My(xyz), (26)
2,0(1 2 y) 2pb 2y 4( Y
and (25) shows that
DM (xyz) = p(ryz). (27)

A more general statement of the combinatorial pro-
perties of minimum functions can be expressed as
follows:

M{C, M (xyz); O, M (ryz)}=M,, (ryz), (28)
where the C’s are constants concerned with the weight-
ing of the images used in forming the original minimum
functions. Relation (28) corresponds with adding a
p-gon image to a g-gon image to form a (p+g)-gon
image, as discussed in an earlier section of this paper.

Relation (26) is of great practical utility. It implies
that the decomposition of a Patterson map by one
line image can be combined with the decomposition by
a second line image to form a close approximation to
the electron density (27). Ifthe two Patterson peaks,
ae and ab, used to establish the line images are the
centrosymmetrical ‘interactions’ of the same species
of atom, then p,=p,, and the relation degenerates to
the simple form

M{*Mo(xyz); *My(xy2)}=2%My(zyz). (29)
This specialized relation is very useful in combining
minimum functions resulting from the decomposition
of the Patterson synthesis by symmetrically equivalent
atoms, and can always be used where symmetry other
than an inversion exists in the crystal being analyzed.
The relation is extensively used in the discussion which
follows.

The practical application of the
minimum function

In practice, it is most convenient to start transforming
the Patterson synthesis to the approximate electron-
density map by first establishing a line image and then
using the minimum function to find the images of this
line. In the general case, the line image decomposes
the Patterson synthesis into two displaced, enantio-
morphous solutions. If the crystal (or its projection) is
centrosymmetrical, these solutions are, of course,
identical. They coincide provided that the line image
is established by an ‘interaction’ between two centro-
symmetrically situated atoms. The proper selection of
a centrosymmetrical ‘interaction’ can be guided by
(@) the relation of rotation peaks to reflection satellites
in a Patterson projection, (b) by the relation between
the peaks on the Patterson projection to those on a
parallel Harker projection, or (¢) by calibration of peaks
in terms of the origin peak, as discussed in an earlier
section.
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Suppose that a two-dimensional Patterson synthesis
is to be decomposed by means of the minimum
function. Let the centrosymmetrical image point
chosen have co-ordinates uv. Then the minimum
values of the function

wM(xy)=M{P(xy); Plut+z,v+y)}  (30)

can be readily determined by examining the numerical
values of the Patterson function at all pairs of points
zy and v+, v+y, and noting the minimum value for
each such pair. In order to have the origin of x and y
in the resulting approximate electron-density map
coincide with an inversion center, Fig. 10(a) and (b)
shows that this minimum value should be recorded on
the map of the minimum function at ju+z, Jv+y,
instead of at zy. This new map contains a set of discrete
sampled values of the minimum function “M,(xy).
This analytical method of forming the minimum
function has the disadvantage of discontinuity, i.e. a
discontinuous sampling of the minimum function is
derived from a discontinuous sampling of the Patterson
function. If the original point image at uv in the
Patterson synthesis does not lie exactly on a sampled
value, one must either approximate it by choosing an
image point on the nearest sampled value, or resort to
a very tedious double interpolation in finding every
resulting sample of the minimum function.

A continuous procedure of finding M, requires a
contoured Patterson map. A line whose ends are at 00
and uv is first established as before and then moved
parallel with itself over the entire surface of the
Patterson map. One then records at positions corre-
sponding to the midpoint of the line (but on a separate
sheet) the minimum value of the Patterson function
found at the two ends of the line. Of course, continuous
recording is an impractical procedure. The general
method can be rendered practical by recording the
value of any contour encountered by either end of the
line, provided that the encountered contour is the
minimum of the two values at the ends of the line.
A simplifying procedure is to move the line parallel to
itself with one end continuously on the contour of
minimum value until the other end of the line crosses
a contour of equal value, after which that end controls
for awhile.

The theory behind this last method can be put into
practical use by a scheme which amounts to pulling
the two ends of the line together and examining the
points at the two ends at the same time. To do this,
one prepares two Patterson syntheses, contoured pre-
ferably in color. The two Patterson tracings are placed
one over the other so that any xy on one sheet and the
corresponding u 4+, v+y on the other appear together
at a common point. As indicated above, this common
point is preferably the middle of the line, namely,
Ju+z, 3v+y. The minimum value at the continuum
of all points of the pair of sheets is now the value of the
minimum function “M,(z,y).
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As a practical procedure, the minimum function can
be quickly contoured by tracing on a third sheet those
contours from the two underlying Patterson maps
which represent the smaller values at all points. This is
equivalent to drawing that contour of a particular
value from one of the two Patterson maps which is
nearest a peak in the minimum function. That this
procedure is correct can be appreciated by reference to
Fig. 11. The diagram shows two peaks, one from each
Patterson map, whose heights are shown in the third
dimension. The horizontal plane is a contour level L
at a particular value of the Patterson function. One
observes that, at point a, the right peak has the
minimum value, the left peak having a higher value.
The contour of the minimum function in the neigh-
borhood of H is therefore the Patterson contour a of
value L nearest the highest value of the minimum
function H,and not the value e, which is farthest from H.
Similarly, b and not fis the contour outlining the other
side of the minimum function peak H.

Fig. 11.

By inverting Fig. 11 it can be demonstrated that the
minimum function can also be contoured by following
that contour of the two Patterson maps which is
farthest from each trough in the minimum function.

"The area within the lowest contour outlining troughs
on one Patterson map (shaded in the middle diagram of
Fig. 14) has the very interesting property of cancelling
peaks on the other Patterson map which are not to
become peaks of the electron-density map. In this
way the minimum function reduces the n? Patterson
peaks to the required n peaks of the electron-density
map. In a similar way, all contour levels of one
Patterson map modulate the features of the other
Patterson map which have a higher level.

As a matter of practical procedure it is well to limit
the number of contour levels represented on the
Patterson map to a few, say 4-7 levels. This spread
should be sufficient to represent the electron-density
spread of the atoms in the crystal, of course. Further-
more, the routine contouring of the minimum function
is much simplified if the two Patterson maps each
comprise an area of 13} cells, specifically 1 translation
wide and 13} translations long. One map should be
drawn with the origin in the corner of a cell, the other
with the origin in the center of the cell. When forming
an M, map based upon an inversion image, the origin
of the M, map occurs half-way between the origins of
the two displaced Patterson maps. The selection of the
area of 1} Patterson cells, recommended above,
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assures that a full non-centrosymmetrical pattern unit
of the electron-density cell is obtained from a single
setting of the Patterson maps.

The procedure just outlined for mapping the
minimum function can be readily generalized. If one
wished to derive a contoured map of the minimum
function M ,, it could be done by displacing p trans-
parent copies of the Patterson map (with contour levels
scaled, if necessary, as indicated below) so that the
origins of the several maps come to lie at the co-
ordinates (with respect to the first map) of

00, w vy, Vs, ..y Uy 1V, .

On a separate transparent sheet the minimum contour
of the p maps is then traced according to the pro-
cedures outlined above for contouring M,. If such
a single-step method of forming the minimum function
map M, is utilized, the scaling of the contour levels
must be in accordance with the coefficients C of (28).
A more convenient way of deriving maps of the
minimum functions of higher rank is by way of a step-
wise procedure. A formal treatment of the theory was
given in the last section in discussing combinatorial
properties. The practical procedure is to form two M,
maps, based upon two different centrosymmetrical
image points, and then combine these by contouring
the minimum of the two maps to form an M, map.
When this is done, the correct value of 1/(2p) in (26)
should be recognized by scaling the contours of the two
maps appropriately. When the two M, maps to be
combined are derived from the use of two different
Patterson peaks, each caused by the ‘interactions’ of
the same kinds of atoms, then the whole procedure
simplifies in that the M, maps are directly combined
without any scaling of their contours being required.
An important example of this is encountered with
every crystal having more symmetry than mere centro-
symmetry. Forexample, in any of the two-dimensional
space groups isomorphous with plane point group 2mm
(for example, p2mm, Fig. 12 (a)), the Patterson syn-
thesis has a set of four rotation peaks and four reflection
peaks (Fig. 12 (b)). One relation between these four is
the trivial relation of centrosymmetry common to all
Patterson syntheses. But rotation points not related by
centro-symmetry in the Patterson correspond to two
different ‘interactions’ between different pairs of
rotation-equivalent atoms of the equivalent set. When
one forms an M, map based upon one image, say that
at uv, this map is, in general, different from the M,
based upon the image at @v, although related by
symmetry to it. These two maps may be designated
w M o (xy) and ¥ M (zy) respectively. They can be com-
bined to give a map of a minimum function of greater
rank, namely, *» ® M (xy). To do this, one superposes
the maps, and traces the minimum of the two. In this
example, the two M, maps are formed by images based
upon atoms @, a, and @,a, in Fig. 12 (a). These are
related by a horizontal symmetry line. Accordingly,
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two “M,(xry) maps are prepared, one is rotated
about this horizontal line, placed so that its edges
coincide with the other “ M ,(xy), and the minimum
of the two maps is then contoured. This whole
operation is equivalent to using a single image-
seeking function which seeks images of the quadri-
lateral a, a,@, @, in Fig. 12 (a), whose apices are uv, #0,
00 and Ov in Fig. 12 (b). The whole procedure could
therefore also have been done in one step by taking
tracings of the four Patterson maps P(xy), displacing
them so that they had origins at wv, %0, 00, and Ov and
then tracing the minimum contours from all four at
once, as indicated in an earlier discussion. As a matter
of practical procedure, tracing the minimum from more
than two Patterson maps is not very easy.

a & “...’pa?

7

a T %ay

In a similar way, two M, maps can be combined
directly, provided that they are based upon any two
equal Patterson ‘interactions’. These need not repre-
sent ‘interactions’ between pairs of atoms related by
symmetry. In this procedure all four atoms of the
fundamental set are, however, of the same species. The
increased rank p of the minimum function M,, so
found, provides a new map which is closer to the
electron density than either of the original M, maps.

Examples of the use of the minimum function

(1) Derivation of an approxzimate p(xy) from P(zy) for
berthierite, FeSb,S,

The crystal structure of the mineral berthierite,
FeSb,8S,, offers a favorable vehicle for demonstrating
the use of the minimum function in crystal-structure
analysis. The three kinds of atoms in the structure,
namely, Sb, Fe and S, contains 51, 26 and 16 electrons
respectively, so that electron densities roughly in the
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ratio 4:2:1 can be expected in the final electron-
density map. Thus the ability of the function to
approximate a considerable spread of electron density
can betested. Furthermore, this crystal has moderately
large a and b translations, but a small ¢ dimension.
This feature permits testing a moderately large
electron-density projection area without the usual
complication due to overlap of atoms as seen projected
through a thick slab of crystal structure. In other
words, the (001) projection of this crystal offers an
approach to a section through the three-dimensional
electron-density function.

Berthierite is orthorhombic (Buerger, 1936), space
group Pram, and has four units of FeSb,S, in a cell of
dimensions

a=11-44, b=14-12, ¢=3.76 A.
The space group Pram projects on (001) as the two-
dimensional space group p2gg. The symmetry elements
of this group are shown in Fig. 13 (a).
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Data for the intensities of 20 were obtained from
a single precession photograph. The photograph was
processed by the M.I.T. modification of the Dawton
method, from which integrated intensities were deter-
mined. After correcting for Lorentz and polarization
factors, a Patterson projection P(zy) was computed.
The representative quarter cell of this is shown in the
upper middle part of Fig. 14.

This Patterson was not interpretable by any standard
methods, and even the location of the heaviest atoms
could not be fixed with certainty with its aid. The
relation between the co-ordinates of any inversion
peak and the glide-reflection satellites in a quarter cell
of P(xy) for this symmetry is shown in Fig. 13(d). A
start on the solution can be made by noting that the
quarter cell contains two antimony atoms, and that
there are two sets of reflection satellites. These deter-
mine four possible locations of rotation peaks, ac-
cording to the relations shown in Fig. 13 (b). Two such
locations, marked by crosses in P(xy) in the upper
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middle of Fig. 14, are near more or less acceptable
peaks, although not actually on their maximum
positions. The best location is the lower left cross.
If this peak and the two corresponding satellites
are truly a set of ‘interactions’ within a sym-
metrically related set of atoms, the two reflection
satellite peaks should have weight 2, while the rotation
peak should have unit weight, a relation which is not
obeyed. Such lack of harmony in the weighting of sets

QYA
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of Fig. 14. Now, a glide line runs vertically through
the center of this map, as shown in Fig. 13 (a). Con-
sequently the lower querter cell should be the glide
equivalent of the upper quarter cell. These two
quarter cells can therefore be combined to form a
map of an M, function. To do this, the lower quarter
cell is traced, laid directly over the upper quarter cell
in reversed position (the glide operation), and the
minimum contour of the two quarters traced. This

vV

)

>

Fig.

of symmetrically related ‘interactions’ is commonly
observed and may, perhaps, be attributed to differ-
ences in the relative thermal motions of atoms related
by different symmetries.

Accepting the lower left cross provisionally as the
correct location of a rotation (i.e. a centrosymmetrical)
‘interaction’, one can then set up the minimum function
based upon the co-ordinates of this point plus those of
the origin, namely, %7 018)f,(xy). The minimum
function is then simply found by placing one trans-
parent Patterson map over another, the origin of one
being placed at the cross of the other. By contouring
the minimum, as described in the last section, the large
M, map is derived which is shown in the upper left

14.

results in the M, map shown below it in Fig. 14. Such
a combination can always be made in crystals having
greater symmetry than merely an inversion.

Some of the major features of the distribution of
atoms in the cell are already plain in this M, map. The
original Patterson peak at the lower left cross has given
rise to a heavy atom at about 0-147, 0-060, and also
another large peak of about equal magnitude at about
0-040, 0-384. The last is obviously to be interpreted as
the other antimony atom of the quarter cell. Its
location is consistent with the upper right cross of
P(zy) in Fig. 14. Using this cross as an image point,
another M, can be graphically derived, namely,
0080, 0283 3 (7). This is shown in the upper right of
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Fig. 14. The upper and lower halves of this are com-
bined to form an 3/, map, as in the last case. The result
is shown just below 0080, 0233 }f (/).

Finally, the two M ,’s can be combined to provide an
Mg, specifically 0297, 0118, 0-080,0-233 Jf (304/). This is shown
at the middle bottom of Fig. 14. This function is a
sufficiently close approximation to the electron density
so that all the atoms of the crystal structure can now be
identified. The map of Mg shows two large peaks of
relative weight 4, one peak of relative weight 2, and four
peaksofrelative weight 1. These are obviously to beiden-
tified with 28b, 1 Fe and 48, respectively. That this
is at least approximately the correct structure can be
demonstrated by comparing the original precession
photograph with the fly’s-eye photograph based upon
the atom locations and identifications given by M.
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Fig. 15. Comparison of the map of the minimum function
M(xy) with the map of p(xy) for berthierite. The latter,
shown at the right, was prepared by using the measured
| F |'s together with phases based upon the atom location
of Mgy(xy). The Fourier synthesis is a photograph of the
synthesis produced by the Pennsylvania State College
X-RAC, by courtesy of Prof. Ray Pepinsky.

(2) Derivation of an approximate p(xy) from P(xy) for
claudetite, As,O,

The space group of the mineral claudetite, As,O,, is
P2,/n, and its cell dimensions are

a=>526, b=12-87, c=4-54A. [=93°49".

This cell contains 4As,0,. Space group P2,/n projects
on (001) as the two-dimensional space group p2gg. The
symmetry of the projection and its Patterson are the
same as those shown in Fig. 13.

Dr Alfred E. Frueh is investigating the structure of
claudetite and has kindly supplied me with numerical
values of the Patterson projection P(zy), shown in
Fig. 16 (a). I have deduced an approximate electron
density for this projection by minimum-function
methods. The start was an acceptance of the location,
marked on P(zy) by a cross, as a rotation peak sub-
stantiated by reflection satellites. This was the only set
of features of the Patterson projection which was sub-
ject to interpretation. The solution followed steps
described in detail under the discussion of berthierite.
The end-result is a map of the minimum function
My(xy) shown in Fig. 16 ().

Dr Frueh has derived the electron-density projection,
p(xy), by methods not involving image-seeking
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functions. His map, which he has kindly allowed me
to reproduce, is shown in Fig. 16(c). No attempt is
made here to discuss the locations of atoms in the map;
attention is merely called to the general agreement of
the topography of Mg(zy) and p(xy).

In Fig. 16 (d) there is presented for comparison a map
of the product function /II,(xy) for claudetite. This
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Fig. 16. Image-secking functions applied to the interpretation
of the Patterson projection of claudetite, monoclinic As,0O,.
The symmetry relations are the same as shown in Fig. 13.
(a) Quarter cell of P(xy), prepared from numerical data

supplied by Dr Alfred E. Frueh. (b) Map of the minimum
function, Mg(zy). (c) Electron-density map, p(zy), as found
by Dr Alfred E. Frueh by methods not based upon the use
of image-seeking functions. (Used by permission of Dr
Alfred E. Frueh.) (d) Map of the product function, /II,(zy),
based upon the location marked by the cross in P(xy).
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map is based only on a line image generated by con-
necting the location of the cross marked in P(zy) with
the origin. The resemblance of this product-function
map with the electron-density map is reasonably good,
especially when it is realized that it is only a II, map.

Remarks on other current methods of inter-

preting Patterson maps
Since the writer demonstrated that vector sets can be
interpreted, a number of supposedly different rival
methods have arisen which have also been proposed as
devices for solving Patterson maps (Clastre & Gay,
1950a, b, ¢; Garrido, 1950 a; Robertson, 1951 ; McLach-
lan, 1951). Most of these have a common feature; they
deal with Patterson peaks as if they were points on
a vector set consisting of discrete points. These peaks
are treated by a geometrical device (usually a trans-
lation) which is merely another description for finding
images. Such methods are therefore not different, in
essence, from those first described in VS, except that
a different language is used in the discussion (Mauguin,
1950). They are accordingly no more powerful than
vector-set methods used for discrete points. To use
them for interpreting Patterson maps, the Patterson
peaks must, in essence, be regarded as a map of weighted
points. These methods are not useful as they stand in
interpreting a typical Patterson synthesis because, as
pointed out earlier in this paper, the high values of a
typical Patterson synthesis are often not single peaks.
In fact, they usually arise owing to a coalescence of
many peaks. To treat such a composite feature as
analogous to a point on a vector set of discrete points is
most misleading.

The ‘vector convergence method’ (Beevers &
Robertson, 1950; Robertson, 1951) can be discussed
along more quantitative lines. In its best form it
appears to be equivalent to using a sum function as an
image-seeking function. In other words, as the image-
seeking polygon roves the Patterson synthesis, the sum
of the Patterson values at its several vertices is con-
tinuously laid down. If this function is studied with
respect to a line image, as in Fig. 8, it will be seen that
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every time the roving line encounters a point of the
vector set at either of its ends, it lays down a point of
weight either a or b. There are therefore 2n2 solution
points laid down, of which # (plus »—2 more for line
images only) coincide and have weight (2 +5). Clearly,
even with a vector set of discrete points, the vector con-
vergence method provides a much more remote
approximation to the electron density than either the
product function or the minimum function, which, in
this simple case give an exact solution for the electron
density.
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